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Abstract

For as long as Evolutionary Algorithms have been applied to the optimisation
of Neural Networks, the severity of the Permutation Problem has been debated
without consensus. Considered by many to be a serious obstacle to be worked
around when designing Neuroevolutionary algorithms, various proposals for solving
the problem have been presented over the past two decades. The opposing view
that the problem is not severe in practise has also been presented in the earliest
and most recent research.

The aim of this thesis is to bring clarity to the issues surrounding the Permuta-
tion Problem in the literature. We first survey the presentation of the problem
in the literature with the aim of producing a single definition and set of naming
conventions by which to discuss the problem. Then, we present the exact prob-
abilities for the likelihood of encountering permutations in the initial population.
We then estimate the likely rate of occurrence of the Permutation Problem for
the case where not all neurons can be considered unique.

Empirical support for the theoretical results is then given in the form of
experiments to test explicitly the rate of occurrence and relative severity of the
Permutation Problem in practise. As part of this investigation we also explore
the role of crossover in Neuroevolution.

The penultimate chapter uses what we have learned about the nature of
permutations in general to present a novel framework for constructing permutation-
free search algorithms. The benefits here are not specific to the building of
Neuroevolutionary algorithms, rather the presented framework appears to be
applicable to any combinatorial optimisation problem.

We conclude by reviewing what we have learned about the Permutation
Problem and its severity in practise in Neuroevolution. New directions for this
work are discussed, particularly in relation to the application of the presented
permutation-free search framework.
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Chapter 1

Introduction

An idea which has survived largely unchallenged in the field of Neuroevolution is
that there exists a fundamental difficulty when attempting to apply Evolutionary
Algorithms to the construction and optimisation of Neural Networks. This idea,
which has been named variously as the Permutation or Competing Conventions
Problem, has often been demonstrated using intuitive arguments (effectively
thought experiments). The aim of this thesis is therefore to explore the implications
of this idea from both theoretical and empirical perspectives.

In this chapter we will introduce the problem in more detail and motivate
the need for its investigation. We then state the thesis questions and give a
chapter-by-chapter synopsis of the thesis.

1.1 Evolved Artificial Neural Networks

Artificial Neural Networks (ANN) are computational devices which are loosely
modelled on the animal brain. These networks are capable of performing tasks
which might not otherwise be well suited to the more traditional paradigm of
programmed software. Examples of such tasks include various kinds of classification
[YL97, Zha00, YI08], system control [GM99, GBM01, GM03b, GM03a, GSM06],
forecasting/prediction [KAYT90, Zha01, ET05] and game playing [SM04, ATL07,
Mat07, Cro08].

Evolutionary Computation (EC) is the field of problem solving using ideas
and mechanics taken from the science of natural evolution. The combination of
these two fields gives us Neuroevolution, which is the application of Evolutionary
Algorithms (EA) to the task of building and optimising ANN.

1.2 The Permutation Problem

The field of Neuroevolution embodies the application of Evolutionary Algorithms
to the task of Neural Network construction and optimisation. The Permutation
Problem is a difficulty which arises when designing such algorithms. Generally
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speaking this difficulty arises in any problem where the search algorithm imposes
an ordering on a solution while the solution space is order independent, meaning
that each possible ordering of a given solution is equivalent.

This kind of order independence causes a number of problems, particularly for
certain classes of Evolutionary Algorithm. This thesis investigates these problems
and attempts to quantify their severity in practise.

1.3 Why study Neuroevolution?

The last decade has seen a significant growth in research in the application of
Evolutionary Algorithms to the optimisation of neural networks, particularly for
problems where traditional reinforcement learning often fails to produce a suitable
solution (for a summary of such applications see [GSM06]).

A Neural Network, while biologically inspired, is essentially a hierarchy of
functions arranged using weighted connections. When arranged correctly, the
network is capable of performing useful computations while still remaining a
simple model. The properties of neural networks are presented in more detail in
section 2.1; for now it is sufficient to consider neural networks as a compound
of functions which accepts and transforms a fixed number of inputs into a fixed
number of outputs, which are then interpreted accordingly. For example, if we
wish our network to map between some tissue sample readings (the inputs) and
labels such as ‘malignant’ or ‘benign’ (the outputs) then we might assign one
input for each tissue measurement (e.g. average cell radius, cell texture etc.) and
one output for each label. The mapping between those two interfaces is the area
of interest here, i.e. how to best arrange a collection of neurons such that passing
in data for new patients produces a usefully accurate diagnosis.

Designing a neural network by hand is a tedious process which is intractable
for all but the simplest of problems (e.g. modelling Boolean logic gates). A neural
network consists of a number of neurons (essentially functions) and synapses
(weighted connections). The architecture of a network refers to the arrangement
and connectivity of these neurons. In the simpler case the architecture is fixed
and it is the weights1 which are adapted in order to solve the given problem.

Neuroevolutionary algorithms are capable of producing networks which can
approximate complex, noisy nonlinear functions such as those of stock markets,
allowing for limited prediction of future market behaviour (function regression).
Another common utilisation of Neural Networks is for classification, where given
some data we wish to predict which of a finite number of classes the instance
belongs to. For example with our previous medical scan data the possible classes
might be ‘malignant’ or ‘benign’. More generally, it has been shown theoretically
that neural networks can approximate any function to any degree of accuracy

1The terms weight and synapse will be used interchangeably throughout this thesis, though
‘weight’ will be favoured. The term synapse reflects the biological inspiration for the structure,
whereas weight reflects its purpose.
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required under certain constraints [LLPS93, HN89]. The problem then is how to
set or discover the architecture and corresponding optimal weights.

Neuroevolution offers the potential to improve upon traditional uses of neural
networks by:

• Allowing the network structure to fit the problem, rather than fitting the
problem to a fixed structure [ASP94].

• Overcoming the limitations of traditional learning algorithms in recurrent
neural networks [Hoc98].

• Producing solutions to tasks which prove overly difficult for Reinforcement
Learning algorithms in general [Sta04, GSM06, GSM08].

As this work is primarily concerned with the nature of and issues surrounding
the Permutation Problem, we will focus on the class of feedforward Neural Networks
with fixed architecture, composed of a single fully-connected layer of hidden neurons
only.

1.4 What is this Thesis about?
In this section we give an overview of the thesis in terms of the questions it aims
to answer, the motivation behind the work and finally its contributions to the
field.

1.4.1 Thesis Questions

The main question this thesis aims to answer is, “Is the Permutation Problem
Serious in Practise?”2. As ‘Permutation Problem’ does not have a single, agreed
upon definition, we begin by presenting the various definitions in the literature
and then clearly state our own interpretation. We note that there are somewhat
conflicting or incompatible ideas present in the literature regarding what the
Permutation Problem is, and how serious a concern it is. We first examine the
various ways in which it has been presented, with the aim of producing a taxonomy
of variants of the Permutation Problem such that all work can be related to a
single set of definitions and thus be comparable.

With the various interpretations of the Permutation Problem formalised it is
then possible to begin answering the question of its severity in practise. This is
an important question to ask because of the lack of consensus in the literature
regarding to what degree the Permutation Problem affects the performance of
Neuroevolutionary algorithms. The severity of the Permutation Problem has
been used as justification for the poor performance of recombination (crossover)

2By ‘serious’ we mean, “is the problem a serious consideration when working with Neuroe-
volutionary Algorithms?”.
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operators, thus causing their exclusion from Neuroevolutionary algorithms in
some cases [ASP94, Yao99]. By quantifying this severity we can determine if the
performance of crossover (poor or otherwise) is due to the Permutation Problem
or to other factors.

Although not the focus of this work, a closely related issue is that of the role
of recombination in Neuroevolutionary algorithms. The Permutation Problem
has often been used to justify the exclusion of crossover; we examine the role
and utility of crossover in general, in light of what we have learned about the
Permutation Problem. In answering the question, “Is our understanding of how
recombination works in the context of Neural Networks sufficient?”, we aim to
demonstrate why and in what cases crossover need not be excluded outright when
evolving Neural Networks.

Finally we ask, “Can our knowledge regarding the Permutation Problem be used
to improve Neuroevolutionary search methods?”. The optimisation of Neural Net-
works poses a somewhat unique problem to Evolutionary Algorithm practitioners.
We investigate whether we can use what we have learned about the nature of the
Permutation Problem to improve our algorithms. The result of this is the Multiset
Search Framework, a novel representation suitable for evolutionary search that
contains only multisets, and so in this case only unique networks.

1.4.2 Motivation

There exist in the literature multiple aliases for what we call the Permutation
Problem. It would appear that these aliases on the whole emerged independently,
around the time when this problem was first discussed and received the most
attention.

Whenever we have one concept with many labels it is desirable to reduce the
number of naming conventions to one. If we have just one name for a concept
or problem it becomes easier to discuss and search for in the literature. With
multiple naming conventions we run the risk of spending extra time to affirm
with one another that one term is in fact synonymous with another. Conversely if
two terms are considered synonymous when they in fact refer to (possibly only
slightly) different concepts, then we run the risk of wasting considerably more
time discussing two different concepts while believing that we are in fact ‘on the
same page’.

A final confounding factor when discussing the Permutation Problem comes
from intuitive definitions which refer fundamentally to the same idea but with
slight differences which may only be alluded to implicitly. This lack of concreteness
regarding each definition results in a (possibly unconscious) judgement call being
necessary on the part of the reader. Different readers may come to different
conclusions regarding the intention of a particular author when reading a definition.
Thus for some given definitions of the problem we have room for interpretation;
this is especially the case with a problem such as the Permutation Problem due
to its intuitively simple nature; as it may be described as ‘obvious’ once known, it
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can be tempting to assume that it is a well understood problem. An objective of
this work is therefore to reduce confusion regarding the nature of the Permutation
Problem by clearly defining each alias present in the literature, presenting a clear
definition and suggesting naming conventions for future discussion.

The major motivation for this work is the lack of consensus in the literature
regarding the severity of the Permutation Problem. As we will see in section
3.3, early work was divided: its perceived severity ranged from being virtually
insurmountable [BMS90] to largely insignificant in practise [Han93]. There are
many examples in the literature of in what form the problem may manifest. The
problem is that these examples are intuitive in nature. Each example can be
confirmed to be possible but no exact value or estimate is given for how often the
problem is expected to occur. This work is therefore motivated by the need to
make a clear distinction between how serious the problem is when it occurs and
how often it actually does occur.

In this work we therefore aim to provide evidence, both in the form of exact
probabilities and empirical estimates, of how often we can expect the problem to
occur in a practical setting. With this information we may be able to improve
upon current algorithms through a deeper understanding of the conditions under
which the problem occurs. Such an attempt from the perspective of redundancy
elimination is presented in Chapter 6.

1.4.3 Contributions of the Thesis

The main contribution of this thesis is an analysis of the Permutation Problem
from both theoretical and empirical standpoints. We also present a novel Neur-
oevolutionary search algorithm and problem representation that eliminates the
Permutation Problem. In this section we summarise these contributions and note
where they appear in the thesis.

Contributions to the Understanding of the Permutation Problem

• The first review of the literature on the Permutation Problem to examine its
multiple definitions and aliases in detail, with a focus on creating a taxonomy
for the different views and interpretations of the problem (Chapter 3).

• The explicit distinction between exact-weight permutations and those which
simply involve similar or effectively-equivalent neurons (Chapter 3).

• The first set of exact probabilities for the likelihood that the Permutation
Problem will occur, in its various forms, in the initial population (Chapter
4).

• Common beliefs regarding the nature of the Permutation Problem are
explored probabilistically, highlighting areas where intuition alone can fail
to accurately estimate the likelihood of an event occurring (Section 4.5).
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• A fast method based on the theory of integer partitions for calculating the
probability of the Permutation Problem occurring in realistic network spaces
(Section 4.3.2).

• First explicit permutation counting experiments, where the existence of
permutations in the population is checked for to produce empirical estimates
of the rate of occurrence of the problem (Chapter 5).

Contributions in a Wider Context

• A novel framework, Multiset Search, is presented which can be used to
reduce a search space down to only the points which represent its unique
networks in such a way that existing search algorithms can be applied with
only minor modifications. This framework is used in the development of a
novel Neuroevolutionary algorithm, Multiset-based Network Search (MBNS)
which removes the redundant networks (due to the Permutation Problem)
from the search space entirely. This framework can be applied with minor
modifications to any problem with a similar type of redundancy (Chapter
6).

• The method for calculating the probability of the Permutation Problem is
equivalent to the probability of drawing two strings which are permutations
of each other from a space of strings defined by a fixed alphabet and string
length. As this is by no means restricted to networks of neurons, the equation
and provided implementation can be used to calculate this probability for
other problems with these characteristics (Chapter 4).

• A discussion of the use and limitations of Price’s Equation [Pri70] in profiling
an Evolutionary Algorithm. We highlight the gains in insight gained through
the use of so-called ‘Price Plots’ [BPJ04] but also attend to their limitations.
Future work is suggested which could make them a more useful tool for the
profiling of Evolutionary Algorithms (Chapter 5).

Overall, this thesis aims to provide practitioners with the background and
tools necessary to evaluate the severity of the Permutation Problem for their
own network representations and problems, and factor this likelihood into their
Evolutionary Algorithm design accordingly. A further contribution is the analysis
of the Permutation Problem in practical settings which confirms the main result
of past empirical investigations, i.e. that the Permutation Problem is not serious
in practise due to its low rate of occurrence. We further contend and provide
evidence for the conclusion that the Permutation Problem is also not serious
from a theoretical standpoint. While the Permutation Problem does not appear
to occur often in practise, the search space nevertheless contains a high level
of redundancy. The presented Multiset-based framework then eliminates this
redundancy and in doing so eliminates the possibility of the Permutation Problem
occurring.
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1.4.4 Structure of the Thesis

In Chapter 2 we briefly cover the background of the fields of Neural Networks,
Evolutionary Algorithms and their combination, Neuroevolution. This chapter
also introduces the test problems that will be used throughout this work.

In Chapter 3 we begin by defining the various kinds of permutation that will be
investigated in this work. The origin of the Permutation Problem in the literature
is then investigated, with an emphasis on tracing the evolution of the idea of the
Permutation Problem itself over time and identifying the wider area of literature
to which this thesis contributes.

In Chapter 4 we present the calculation of the exact probability that the
(exact weight variant) Permutation Problem occurs in the initial population. An
alternative, fast method for calculation of this probability is presented, allowing the
calculation of this probability for some real Neuroevolutionary problem settings.
Then, in order to estimate the likelihood of the Permutation Problem when we no
longer assume the uniqueness of neurons, we estimate the change in probability
as the search space becomes increasingly redundant.

In Chapter 5 we analyse empirically the occurrence of (exact weight) permuta-
tions and present an analysis of the efficacy of crossover in Neuroevolutionary
algorithms.

In Chapter 6 we present a framework for constructing permutation-free search
algorithms. Using what we have learned about the nature of permutations we
define a search space representation and set of search operators which allow for a
one-to-one mapping between points in the search space and unique arrangements
of neurons, both into sets and multisets.

Chapter 7 concludes this work with a summary of what we have learned about
the Permutation Problem and its significance to Neuroevolutionary algorithms,
ending with practical advice for practitioners. Finally, some areas of interest for
future work are outlined.

1.4.5 Publications Resulting from the Thesis

[HN08] Stefan Haflidason and Richard Neville
“A Case for Crossover in Neuroevolution”, In Proceedings of the Workshop and
Summer School on Evolutionary Computing, Lecture Series by Pioneers (WSSEC),
2008.

[HN09a] Stefan Haflidason and Richard Neville
“On the Significance of the Permutation Problem in Neuroevolution”, In Proceed-
ings of the 11th Annual conference on Genetic and Evolutionary Computation
(GECCO), pages 787-794, 2009.

[HN09b] Stefan Haflidason and Richard Neville
“Quantifying the Severity of the Permutation Problem in Neuroevolution”, In
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Proceedings of the Fourth International Workshop on Natural Computing (IWNC),
pages 149-156, 2009.



Chapter 2

The Evolution of Neural Networks

In this chapter we present the necessary background of Artificial Neural Networks
(ANNs) and Evolutionary Algorithms (EAs) followed by their combination, Neur-
oevolution (NE). We conclude by giving an overview of the type of problems
considered in this work.

2.1 Neural Networks

The term Neural Network naturally evokes the image of something complex and
biological with some level of intelligent ability, such as the animal brain. An
Artificial Neural Network, while certainly capable, does not however posses what
we commonly understand as being intelligence. The human brain is estimated to
contain around 1011 or 100 billion neurons, with each having some thousands of
connections to others [Gur97]. In contrast, an artificial network may serve some
practical purpose with as few as five artificial neurons which might have as few as
10 connections each1.

Broadly speaking, an Artificial Neural Network (ANN) models a (typically
nonlinear) relationship between its inputs and outputs. A problem which we wish
to map to a Neural Network therefore typically has a fixed number of inputs and
outputs. The inputs will be standardised so as to be well suited for the chosen
transfer function of the neurons. This process is described in Section 2.4.2.

Neural Network models belong to the class of connectionist models. In such
a model, information is stored in a distributed, essentially sub-symbolic manner.
For example, if the problem is to form a mapping between handwritten digits and
their respective label (‘1’, ‘2’, etc.) then we might assign one neuron per digit
and so have a symbolic mapping, where each neuron is trained to activate highly
for its assigned digit. This is not necessary however; we may have more or fewer
hidden neurons than there are digits and still find a mapping which solves the

1These numbers are by no means the minimum, nor necessarily typical. The number of
neurons and connections is nearly always minute in comparison to real biological networks
however.
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problem satisfactorily.
If the number of hidden neurons is less than that of the inputs then we are

performing a kind of compression on the input space, aiming to represent only
the information we are interested in (for example in this case, what makes a ‘4’ a
‘4’), but in a lower-dimensional space. For some problems we may instead want
to have a hidden layer that is larger than the input layer so that we then have
a much higher dimensional space in which to represent the information of the
input space, and partition it such that we can accurately distinguish one digit
from another.

An Artificial Neural Network is a (possibly cyclic) directed graph of artifical
neurons (also referred to as ‘nodes’) connected by synapses (weighted connections
or ‘weights’). A neuron fires by computing a sum of contributions from its inputs
(the activation) and passing this sum through an activation function σ to produce
the output. Thus, for every neuron j, the output yj is given by:

yj = σ

(∑
i

wijxi

)
(2.1)

where wij is the weight for the connection between neurons i and j, and x is
the current input vector for that neuron (which may be externally applied, or
composed of outputs from other neurons). Starting with the network inputs, each
node calculates its activation and fires. The outputs are then propagated along all
of the node outputs. This process is repeated until the output nodes are reached
and fire, at which point the network output has been produced.

A network can be constructed from many types of artificial neuron. The choice
of neuron determines the computational power of the network. Figure 2.1 shows
a network composed of Threshold Logic Units (TLUs) which have an activation
function of:

y(a) =

{
1 if a ≥ θ

0 otherwise
, (2.2)

where a is the neuron activation and θ is a threshold or bias. Their all-
or-nothing nature makes them suitable for modelling Boolean functions or for
representing decisions.

Figure 2.2 shows a function regression network which employs a hidden layer
of sigmoid units and a linear output. The training algorithm will adapt the
parameters of the sigmoids such that they fit the desired function2. The sigmoid
activation function is calculated as:

y(a) = σ(a) =
1

1 + e−(a−θ)/ρ . (2.3)

We can alter the y-axis offset and steepness of the sigmoid by modifying θ and
ρ. This makes the sigmoid a versatile activation function as it can be used both in

2The connection weights must also be set accordingly.
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binary (threshold logic) and non-binary (function mapping) signal communication
[Gur97].

Figure 2.1: A network composed of an input unit layer, hidden TLU layer and
output TLU layer. Such a configuration would be suitable for mapping linearly-
inseparable tasks such as XOR.

Figure 2.2: A network composed of an input layer, hidden sigmoid layer and
linear output layer. This configuration would be suitable for mapping simple 1:1
functions.

2.2 Evolutionary Algorithms

The product of a wish to rigourously explain how natural systems adapt and further
how to design artificial systems which exhibit the same properties, Evolutionary
Algorithms (EAs) represented at their inception a new paradigm for problem
representation and solution searching.
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Drawing inspiration from nature, the search process typically starts with a
population of possible solutions which have been randomly generated. We can
also start the evolution from just a single individual. For any non-trivial problem
the likelihood that a solution has been found through random generation is low. A
structured random search is then conducted using the initial random population
as a starting point.

Through a process of evolution life in the natural world has flourished, pro-
ducing a wide range of living things that exhibit ingenious and highly optimised
behaviour, from gathering energy from the sun to flying half-way across the world
without stopping, countless examples could be given. The element that all these
living things have in common is survival. They are with us today because they
have survived over the millennia where others have failed. Why did the others
fail? Broadly, we can put this down to an inability to adapt successfully to their
(sometimes drastically) changing surroundings. Those that survived have done
so through a process of continuous adaptation, with the tiny changes at each
generation cumulatively producing major changes that allow these various organ-
isms to cope with fluctuating temperatures, increased competition, scarcity of
resources and so on. In the field of Evolutionary Computation we aim to emulate
this adaptive behaviour to produce systems that exhibit the level of optimisation
and robustness seen in organic systems. In particular, the ability to improve long
after the initial training, based on experience, is a major goal here.

What if we could build such adaptive systems that mimicked nature? As an
example consider a system with the purpose of examining scans of patients at a
hospital with the aim of determining whether the patient has or does not have
cancer. If such a system could be made to learn from its experience and improve
over time, then more lives could be saved and the workload on doctors reduced.
Even an improvement of a fraction of a percent could translate into a sizeable
number of lives saved. Moreover if this process could be more or less automatic, as
evolution appears to us to be, then our time is suddenly multiplied: it is no longer
necessary to build every element of a new system ‘by hand’, we may instead focus
our time on building better adaptive systems which can be used to solve many
different kinds of problem.

Interestingly, the simplest of EAs can often show surprising ability in problem
solving, simply through repeated application of the basic principles of survival of
the fittest and random variation. Our understanding of the mechanics of evolution
has improved greatly in the last 60 years, with both biologists and computers
scientists mutually benefiting from each other’s work. Computer scientists have
benefited from the study of natural evolution and organic systems carried out
by biologists, and biologists have benefited from the mathematical models and
simulation techniques produced by the computer scientists.

Despite this progress, where we are now able to produce highly complex evolved
systems, there still exists a huge gulf between artificial and natural evolutionary
systems. Not only that, but our understanding of the dynamics of our artificial
evolutionary systems, simplified as they are, is still insufficient to the point where
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Algorithm 1 A simple Evolutionary Algorithm involving only selection and
mutation (taken from [Jon06]).
Generate an initial population of M individuals.

Do until a stopping criterion is met:

Select a member of the current population to be a parent.

Use the selected parent to produce an offspring which is similar
to but generally not a precise copy of the parent.

Select a member of the population to die.

End Do

Return the individuals with the highest global objective fitness.

EA practitioners often find themselves using guesswork and intuition in their
EA design, as before the simulation is done they have little chance of accurately
predicting the outcome.

Over the course of the history of the field of Evolutionary Algorithms a number
of specific classes of algorithm have emerged, often due to having been invented
by different groups in an age without the ease of Internet-based communication.
Each major algorithm type has its own set of assumptions about how artificial
evolution should be conducted, and until recently, its own conferences. De Jong
[Jon06] has presented his ‘Unified Approach’ which brings these different major
algorithm types together in one framework with the aim of bringing together the
knowledge and techniques of each community. We aim to follow the notation and
ideas of this unified approach generally throughout this work, but focus in on
individual algorithms particularly when discussing the history of the field. We now
give an overview of a simple Evolutionary Algorithm using De Jong’s framework.
A more detailed treatment can be found in [Jon06].

2.2.1 A Simple Evolutionary Algorithm

Evolutionary Algorithms typically work through a process of repeated application
of a process of producing successive generations by taking the fittest individuals
and copying them to fill up the next generation. If we begin with a random
population of M and repeatedly take the best and copy them, we will quickly
approach a population which consists only of one of the better individuals in the
initial population. The average fitness of the population is going up, but the
diversity is crashing, which has the effect of halting progress once the population
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has become uniform.
Without some kind of variation in the population, progress will eventually halt

as the population converges to a single individual. A simple form of variation
mimics copying errors in nature. The process of DNA copying in nature isn’t
quite perfect, with copy errors occurring infrequently, but often enough so that
organisms can change significantly in the long term.

Another form of variation that takes inspiration from the natural world is that
of recombination or crossover, where we take two parents of high fitness and form
new individuals from the recombination of parts of each parent. The idea is that
high fitness parents are composed of high fitness ‘building blocks’ that we then
recombine to potentially produce an individual that is better than either parent
in isolation.

This improvement isn’t guaranteed, but with a large enough population and
the right level of variation it becomes likely, as long as you have the patience
to wait for many hundreds or even thousands of generations to pass. While the
increase in computer speed has accelerated research in this field by allowing many
thousands of generations of evolution to be simulated, simply running an EA
for an extended period of time is unlikely to produce the desired results. The
dynamics of the EA must be such that progress can be made for long enough
until the desired solution is found.

Algorithm 1 describes a very simple EA which contains the most basic elements
of most EAs. In this most general form, an EA can be seen to be composed of
three stages, which we repeat until we have a suitable solution:

1. Parent Selection: Using some criteria such as high fitness, select a member
from the population.

2. Variation: Apply probabilistic operators to the selected member to produce a
new individual. This could be mutation which operates on a single individual
or a form of recombination (e.g. crossover) which works on two or more.

3. Survival Selection: Select a member of the population (perhaps one of low
fitness) to leave the population to make space for the new individual.

Even such a simple model is capable of making progress on simple problems.
Neuroevolutionary algorithms are typically much more complex however, examples
of which will be presented in Section 2.3.2.

2.2.2 Crossover: Idea vs. Mechanism

We take a short detour now to discuss an issue which will be important in our
investigation, namely that of why crossover works, and how we can divide this
explanation into the benefit attributable to the idea of crossover and that which
is due simply to its mechanism.
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The idea of crossover aiding the search process by recombining short, high
fitness sections of the genotype has been shown to be somewhat problem dependent.
In some problems there are verifiably no building blocks at the genotype level
[BPJ05] and in others, such as that of the evolution of Neural Networks, the
building blocks are at the very least not obvious [Yao99].

Despite the lack of building blocks in some problems, crossover may still
be an effective search operator. This implies that crossover is able to have a
beneficial effect that does not involve the recombination of building blocks. Jones
[Jon95] tested this hypothesis, drawing the distinction between the idea and the
mechanism of crossover.

It has been demonstrated that while the application of crossover may provide
satisfactory performance, there is a clear distinction between the advantages
afforded by the idea of crossover and those which are a consequence simply of its
mechanics [Jon95]. The idea of crossover is to recombine members of a population
such that the best characteristics of each are used to form new individuals of higher
fitness. The common characteristics of the fit individuals then become building
blocks which are represented by short, high fitness sections of an individual’s
genotype. The aim of crossover is to propagate these high fitness building blocks
throughout the population, raising average fitness by steering the population
towards promising areas of the search space.

In the early days of Genetic Algorithm research there were occasions where an
improvement in performance offered by introducing crossover was taken to signify
the existence of building blocks in the genotype [Fog06a]. It has however been
shown that for many problems where crossover was believed to be recombining
building blocks, it was in fact performing a macromutation [JF00, Fog06a]. Addi-
tionally, other aspects of how genetic algorithms work have been questioned with
the result that long-held principles have been shown to be false or incomplete
[WM97, Rud97, FG97, Fog06b].

Jones [Jon95] presents a means by which the possible existence of building
blocks in a genotype can be ascertained in a less ambiguous manner than with
previous methods. The problem is first attempted using a process of proportional
selection and crossover, then compared to the same process using random crossover.
The aim here is to disrupt the building blocks (if any are indeed present) using the
random crossover operator and see how performance is affected. Random crossover
entails performing crossover on one fit individual and a randomly generated
individual. Given that the second parent has been generated randomly, its fitness
will on average be very low. Combining a fit individual with a random individual
effectively removes the implicit information sharing offered by a population which
clearly violates the idea of crossover. If this approach is at least as effective as
traditional crossover then it suggests that we do not require the idea of crossover,
but that its mechanics may be effective. This idea is explored further in Section
5.3.
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2.3 Neuroevolution
Neuroevolution (NE) is one term often used to refer to the application of Evolu-
tionary Algorithms to the optimisation of Neural Networks. NE algorithms can
be divided into those that optimise

• network architecture,

• the weights of a network of pre-determined architecture, or

• both architecture and weights.

We present and discuss some examples of NE algorithms in Section 2.3.2 which
exemplify each of these categories. However as the focus of this work is on the
Permutation Problem, we only work directly with algorithms which discover and
optimise weights for pre-determined network architectures.

2.3.1 Test Problems

Some examples of problems addressed previously using Neuroevolution include:

• Prediction, e.g. stock market performance [KAYT90, SW98, ZPH98, Zha01,
ET05, CSW06]

• Medical diagnosis [YL97, WYX04, YI08]

• Classification [Zha00]

• Minimally Invasive Surgery [MGW+06]

• Guidance of a finless rocket [GM03b]

• Allocation of cache in a multi-processor system [GBM01]

• Playing ‘Go’ [SM04]

• Real-time evolution of game agents [SBM05]

• Simulated car driving [ATL07]

• Robotics, e.g. double pole balancing without velocity information [GM99,
SM02, GSM06, HN08, HN09a]

A characteristic common to several of these problems is that while the start
and end states are well defined, the exact behaviour required in order to reach
the end state is not known. For example, the ‘Go’ board has a set starting
arrangement and a set of arrangements which signify a win for a given player.
From the perspective of one of the players, we wish to reach a winning state from
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our given starting state. While the goal is clear and well defined, the actions to be
taken at each step towards reaching it are not. Likewise we would like our finless
rocket to reach as high a height as possible from its starting point on the ground,
but what its various thrusters should do at each millisecond in order to achieve
this is unclear.

Reinforcement learning emerged as a possible solution to this type of problem.
In this type of learning, an agent reinforces its perception of an environment
through a process of trial and error, not unlike that of an infant. The agent
attempts the task and is rewarded/penalised based on its performance. Through
these rewards and penalties, the agent is able to adapt its behaviour to perform
the task with a greater degree of skill without being told explicitly what it was
expected to do at each time step. Neuroevolution has shown promise on a number
of problems which have been found to be too difficult for several Reinforcement
Learning-based algorithms [GM99], making NE a worthwhile area of research to
explore.

2.3.2 Algorithms in the Literature

In this section we give a brief overview of some algorithms found in the literature.
There are of course many other algorithms that could be included here; those here
have been chosen for the influence they have had on the field as a whole.

The GNARL Algorithm

The GeNeralized Acquisition of Recurrent Links (GNARL) algorithm searches for
a solution through mutation only. Each network consists of two fixed interfaces i.e.
a fixed number of inputs and fixed number of outputs so the task of the algorithm
is to construct the layer(s) in between.

Each initialised network may be sparsely or fully connected. The network
connections are subject to the following three constraints [ASP94]:

1. There can be no links to an input node.

2. There can be no links from an output node.

3. Given two nodes x and y, there is at most one link from x to y.

These constraints serve to restrict the search space. It is worth noting that
constraint 1 & 2 together prohibit the construction of Jordan model recurrent
networks [Elm90] which is a very simple recurrent model. The network can still
form Elman model networks [Elm90] however it is not particularly likely to do so.

At each generation the fitness of each network is evaluated. The top 50%
of the population are chosen to be the parents for the next generation. Each
network undergoes both parametric and structural mutation. The severity of
each mutation to a given network η mutation is determined by that network’s
temperature T(η):
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T (η) = 1− f(η)

fmax
(2.4)

where f(η) is the fitness of the network η and fmax is the maximum possible
fitness as defined by the problem. The search is therefore initially coarse-grained
becoming progressively finer-grained as the population converges on a solution.

The parametric mutation is performed by perturbing each weight in the network
with Gaussian noise:

w = w +N(0, αT̂ (η)) (2.5)

where N(µ, σ2) is a Gaussian variable, α is the learning rate and T̂ (η) is the
instantaneous temperature of the network η:

T̂ = U(0, 1)T (η) (2.6)

where U(0, 1) is a uniform random variable over the interval [0, 1].
GNARL defines four structural mutations:

1. Add a zero-weighted connection.3.

2. Remove a connection.

3. Add a hidden node with no incident connections.

4. Remove a hidden node and all incident connections.

The algorithm itself is conceptually rather simple yet Angeline et al. report
that it is able to produce solutions to relatively complex problems that should
require a significant number of recurrent connections [ASP94].

EPNet (1997)

Another Neuroevolutionary algorithm which closely follows the Evolutionary
Programming (EP) paradigm [FFP90] is EPNet, presented by Yao and Liu [YL97]
in 1997 and extended over the next decade to evolve ensembles of networks [YI08].

Following the EP paradigm, EPNet discovers new networks by mutating
individuals in isolation, i.e. there is no recombination of individuals. Variation
is achieved through a collection of additive and deleterious mutation operators,
ordered with deletions first to encourage parsimony of networks.

EPNet is an example of a hybrid algorithm which uses a combination of
evolution, Backpropagation and Simulated Annealing to produce new networks.
In this manner networks evolve essentially independently with no direct sharing of
information. Later work makes use of the different solutions to the problem in the

3The weight is zero so that the new connection does not affect the behaviour of the network.
The network must incorporate the link through incremental evolution.
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population by taking the top n networks and combining them to form an ensemble
which often provides a better solution than any of its individual members [YI08].
Two open issues here are how to discover diverse solutions and then how to select
which to include in the ensemble.

Symbiotic, Adaptive Neuro-Evolution (SANE, 1996)

Figure 2.3: The SANE algorithm: Each neuron in the target network is selected
from a single population of neurons. Figure taken from [GM99].

In traditional applications of Genetic Algorithms, for example in function
optimisation, the convergence of the population towards a solution is desirable.
The goal of SANE however was to avoid this convergence so as to foster the ability
to adapt to changes in the task environment by always maintaining some diversity
[MM96].

It achieves this by departing from the model employed in GNARL or EPNet
where each individual in the population is a complete solution to the problem.
Instead, each individual represents just a part of the solution which introduces
the idea of a symbiotic relationship between the individuals.

Symbiotic Evolution Evolutionary symbiosis can either be cooperative (where
members of the population work together to achieve the task) or competitive
(where individuals succeed by competing directly with and winning against each
other4). SANE employs the cooperative variation, where each individual is a
single neuron and the aim is to discover a combination of the individuals which
solves the given problem.

4Typically, when evolving a chess playing Neural Network, the networks would compete
against a known chess AI algorithm. In competitive symbiosis the networks would play chess
against each other.
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Algorithm 2 One generation of the SANE algorithm (adapted from [MM97]).

1. Clear the fitness values of each neuron and blueprint.

2. Select n neurons from the population using a blueprint.

3. Create a Neural Network using the selected neurons.

4. Evaluate the network on the given task.

5. Assign the blueprint the evaluation of the network as its fitness.

6. Repeat steps 2-5 for each individual in the blueprint population.

7. Assign each neuron the evaluation of the best 5 networks in which it parti-
cipated.

8. Perform crossover and mutation operations on the blueprint and neuron
populations.

The SANE Algorithm We begin with a population of randomly initialised
neurons. A network is constructed by selecting probabilistically from the popula-
tion n times where n is the number of hidden units in the architecture (which is
predefined). The fitness of the network is calculated and passed to each neuron.
The neuron calculates its effective fitness by dividing the sum of its network fitness
scores by the number of networks it has participated in.

Over time the neurons with the highest average fitness will be preferred
when constructing the network. Viewed from a coevolutionary perspective the
high-performing neurons are cooperating effectively with other members of the
population. Those with low fitness scores are selected against. One generation of
the SANE algorithm is outlined in Algorithm 2.

This average performance metric is used to select which neurons to crossover
and mutate in order to sample new points in the problem space. The blueprint
representation is an alternative representation of the population where crossover
occurs on a higher level i.e. complete neurons and connections are crossed rather
than individual bits at the neuron representation level.
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Enforced Sub-Populations (ESP, 1999)

Figure 2.4: ESP: Each neuron in the target network is selected from a sub-
population. Figure taken from [GM99].

The ESP algorithm is an extension of SANE. In both algorithms the strategy
is such that rather than evolving individuals which are complete solutions to
the problem, symbiotic individuals cooperate to form a solution. In SANE each
individual is a neuron selected from a single population.

ESP extends this by drawing each neuron from its own sub-population. Each
node position in the network is assigned a sub-population. Thus, the task of each
sub-population is to evolve a neuron which best fits that position in the network.

The aim of this measure is to only recombine individuals from the same
species (sub-population). Each sub-population then converges rapidly towards a
solution for the sub-task it is required to perform. We present an extension to
this algorithm in Section 5.3.

Neuroevolution of Augmenting Topologies (NEAT, 2002)

The aim of the NEAT algorithm is to evolve minimally complex structures which
solve the given problem [SM02]. This is achieved by evolving both the structure
and weights from a minimal structure and aiming to only allow contributing
structure to survive in the long-term. NEAT speciates the population (as in SANE
and ESP (Section 2.3.2)) to ensure that only compatible networks are crossed over.
The speciation measure in NEAT extends that which is found in prior algorithms
by explicitly numbering each gene as it appears in the population. Thus, at any
generation the origins of any particular individual can be tested and used to
determine likely compatibility for crossover, providing a significant performance
gain over topological analysis methods (at the cost of accuracy) [SM02].

Figure 2.5 demonstrates crossover with explicit gene numbering. The genetic
material of the fitter of the two parents will dominate the crossover. This,
coupled with the alignment of compatible genes allows for more reliable crossover,
addressing some of the concerns presented in [ASP94].
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Crossover with explicit gene numbering

Figure 2.5: Crossover in NEAT: As the genes are numbered, any two individuals
can be lined up such that their matching genes will be crossed over directly. The
disjoint genes (6 & 7 in parent 2) and the excess genes (9 & 10 in parent 2) are
inherited from the more fit individual; thus parent 2 has the higher fitness in this
example. Figure taken from [SM02].

Real-time NEAT (rtNEAT, 2005)

An extension of the original NEAT algorithm [SM02] to support online evolution
is rtNEAT [SBM05]. In this algorithm, individual members of the population are
referred to as agents to more accurately reflect their purpose. The population
size is approximately constant, with a new generation being formed every n ticks
(time steps).

The next generation is formed by removing the poorest performing agent from
the population, and replacing it with an agent formed by crossing over two agents
from a probabilistically chosen species with a high measure of fitness.
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In order to provide the protection of innovation in the original NEAT algorithm
it is necessary to adjust the fitness measure. If the fitness alone was used to
determine performance, then new structures would likely be removed immediately
given that a structural mutation is unlikely to improve the fitness of an individual
without further evolution. The solution in rtNEAT is to take into account the size
of a species, and the age of agents: agents must be given a minimum of m time
steps in which to evolve before being considered for removal. The parameter m is
set experimentally and is dependent on the problem type and level of difficulty.

Cooperative Synapse Neuroevolution (CoSyNE, 2006)

In [GSM06] the CoSyNE algorithm is presented and shown to outperform the
state of the art in machine learning methods (both single-agent and evolutionary)
for the non-Markov dual pole balancing task. The design principles of CoSyNE are
very close to that of ESP [GM03b], in that by explicitly forming sub-populations
with a particular assigned sub-task the overall population remains diverse. The
main distinction between the two algorithms is that CoSyNE co-evolves individual
synapses/connections rather than neurons as in ESP.

Compositional Pattern Producing Networks (CPPN-NEAT, 2007)

The CPPN-NEAT algorithm [Sta06] differs considerably to algorithms such as
ESP, CoSyNE and even NEAT itself as the genotype is represented by a function
graph and the phenotype is created by rendering onto an arbitrarily-sized canvas.
Thus the phenotype itself is not a Neural Network but an image.

Figure 2.6 shows a function graph which accepts two inputs x and y and
produces one output. The output of the network is a level of intensity which is
interpreted as a level of gray on the canvas; figure 2.7 demonstrates how the pheno-
type is rendered to the canvas. Through the introduction of periodic functions and
recurrent connections, symmetric features can appear and propagate throughout
the population. The results of [Sta06] show the emergence of developmental traits
found in biological development such as repetition and repetition with variation.

As the aim of NEAT is to complexify structures over time, the networks will
produce increasingly complex phenotypes over time. The explicit tracking of
all genes in the population by the NEAT algorithm also allows the ancestors of
each individual to be examined, showing the timeline of how the phenotype was
constructed.

While the algorithm at present generates images only, the concepts behind the
representation and the emergent symmetry in the phenotypes has significance for
future research into developing networks with indirect encodings.
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Figure 2.6: CPPN-NEAT: A function graph representing the genotype. The
connections between function nodes may be complexified over time to include
recurrence. Figure taken from [Sta06].

Figure 2.7: CPPN-NEAT: The function network evaluates pairs of (x, y) coordin-
ates and outputs a level of intensity which determines the level of gray for the
pixel at that coordinate. This rendering can be performed for any size of canvas.
Figure taken from [Sta06].

2.4 Applications

In this section we briefly review the test problems used in this work. More detail
for the individual problems is given in the relevant sections where they are used.

2.4.1 Classification Problems

The UCI datasets are from the University of California, Irvine Machine Learning
Repositiory [BM98].
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UCI Iris

A very simple problem with a long history in academic research, the Iris classifica-
tion problem is useful as a first problem to test classification algorithms on. It
involves classifying types of Iris based on various measurements of the plant itself.
One class is linearly separable from the other two; the remaining classes are not
linearly separable.

UCI Cancer

The UCI cancer dataset is a set of tissue measurements each taken from a digitised
image of a fine needle aspirate of a breast mass. There are 10 features in total,
recorded three times for each tissue sample. The two possible classes of benign
and malignant are linearly separable if all 30 attributes are used. While a more
complicated domain than the Iris problem, similarly high classification rates can be
achieved. A model based on this dataset (in other work) has correctly diagnosed
at least 176 consecutive new patients [BM98].

UCI Diabetes (Pima)

The UCI Pima Diabetes dataset represents the most difficult classification problem
in this suite. The problem consists of 8 input variables about the subject, including
number of times pregnant, serum insulin level, age etc. The aim of the problem
is to predict whether the subject is diabetic or not. The dataset is somewhat
unbalanced, with 500 instances where the subject is not diabetic versus 268 where
the diagnosis is positive.

Cart-Pole Balancing

The cart-pole balancing problem involves a controller applying force to a cart on
a track which has two hinged poles attached to it. The controller must keep the
poles within a certain angle for a fixed number of time steps. Two variants of the
problem of increasing difficulty are used in this work. In the more difficult case,
the controller is not given the velocity of the poles or the cart and so must either
infer the velocity or discover an alternative strategy. This problem is described in
more detail in Section 5.2.3.

2.4.2 Standardising Datasets

It is common to standardise datasets such that their inputs and outputs meet
certain criteria, such as being centered around zero. Such standardisation is
beneficial when the Neural Network is composed of sigmoidal neurons as if the
inputs are spread over a wide range they may cause the neurons to saturate. Ideally
we would like the inputs to fall within the semi-linear section of the sigmoid curve.
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In this work all datasets are standardised such that each input will have mean
zero and standard deviation one. Given a variable X of raw training instances Xi

we can calculate the corresponding standardised value Si as

Si =
Xi − X̄
std(X)

, (2.7)

where X̄ is the average of X

X̄ =

∑
iXi

N
(2.8)

where N is the number of training samples for X. The standard deviation
std(X) is then calculated as

std(X) =

√∑
i

(
Xi − X̄

)2

N − 1
. (2.9)

Standardising training, testing and validation subsets

In order to avoid bias in the training process it is necessary to avoid standardising
the training, testing and validation sets separately. If each subset is standardised
individually then each training point may be mapped to a different standardised
value in each, confusing the training process. Standardising before dividing the
dataset is also not advisable as then aggregate information of the testing and
validation set are present in the point mapping of the training dataset. To avoid
such a bias, we calculate the mean and standard deviation using the training set
and use these values to standardise each subset. In this manner equivalent points
will have the same mapping in the standardised space but the training process
will truly contain nothing of the validation and testing sets, not even aggregate
information.

2.5 Chapter Summary
In this chapter we have introduced the background necessary for the understanding
of the main body of work. We began with an overview of Neural Networks,
including a presentation of their biological inspiration and the resulting field of
Connectionist Computing. We then presented an overview of the different ‘families’
of Evolutionary Algorithms, and outlined a simple Evolutionary Algorithm which
will serve as a rough base for those presented in the main work. The combination
of Neural Networks and Evolutionary Computation, Neuroevolution, was then
presented. We highlighted some applications where Neuroevolutionary methods
tend to be of particular use, and presented overviews of a selection of state-of-the-
art Neuroevolutionary Algorithms. Finally, we briefly presented the test problems
used and the process employed in standardising them.



Chapter 3

The Permutation Problem

3.1 Introduction

In early research into how Evolutionary Algorithms might be applied to the
problem of Neural Network design and weight optimisation (the field of Neuroe-
volution), a symmetry in the representation was quickly highlighted as a serious
problem. The problem, which came to be known variously as the Permutation,
Competing Conventions, Isomorphism and Structural/Functional Mapping Prob-
lem1 received significant attention in this period of early research, with some
researchers highlighting it as a serious problem to be overcome and others stating
that the problem did not appear to be as serious as it first appeared.

In its described form, the negative side-effects of the problem only manifest
under particular conditions when two neural network genotypes are crossed over.
As such, references to the problem in recent research have typically taken the
form of citations to the early research, often as a justification for the avoidance
of crossover and so the avoidance of the problem. An issue with this is that to
date the investigations into this problem have not provided a definitive conclusion
regarding the severity of the problem2. Those studies that aimed to determine
the severity have invariably concluded that the Permutation Problem appears
not to be serious [MD89, BMS90, Han93, FS08]. These conclusions are based on
empirical evidence regarding algorithm performance; what is missing is tests for
the presence of the problem itself in order to first determine whether it occurs at
all, and then if it does, to estimate its rate of occurrence and effect on performance.
In considering the severity of a particular problem it is necessary to consider not
only what the effect is when the problem occurs, but also its rate of occurrence.
An aim of this work is therefore to provide exact probabilities for the rate of
occurrence of the problem as well as an evaluation of its severity when it does
occur so that the nature of the problem can be more definitively characterised.

1Throughout this work we refer to this problem as the Permutation Problem.
2This is not a criticism of past work, rather the conclusions are simply stated using relatively

non-committal language.

42
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This will be explored in detail in Chapter 4.
A key distinction which must be made would be between an investigation into

the efficacy of crossover versus an investigation into the severity of the Permutation
Problem. It is a feature of the field that there exists much work where crossover has
been avoided, with the Permutation Problem being a commonly-cited justification.
However, it is unclear whether the Permutation Problem is necessarily the cause
of poor performance when using crossover or whether there is another explanation.
Examining performance of an algorithm with and without crossover only tells us
about the efficacy of crossover in that particular setup. We may also coincidentally
learn about the Permutation Problem in this way, but ultimately we cannot be
sure of our conclusions if we do not isolate and remove confounding factors (e.g.,
crossover may be a good/bad fit for our given test problem(s)). This issue is
investigated in more detail in Chapter 5.

In this chapter we begin by identifying the kinds of permutation that we will
be discussing in this work. We then present our definition for the Permutation
Problem and investigate its origins as a concept, and also how its naming con-
ventions emerged over time. Finally we discuss the distinction between a closely
related problem which we term the Incompatible Representations Problem and
the Permutation Problem.

3.2 Problem Definition

Before defining what the Permutation Problem itself is, it is necessary to identify
the different kinds of permutation which may be encountered either in the literature
or in practical settings. If the term ‘Permutation Problem’ is used without
qualifying exactly which kind of permutations are being considered then we
have a possible source of ambiguity which must be resolved if the problem is to
be discussed effectively and without ambiguity. We therefore first distinguish
between the different types of permutation before moving on to the definition of
the Permutation Problem itself.

3.2.1 Types of Permutation

In this section we define the four types of permutation that we consider in this
work:

• Genotypic Weight Permutations (GWPs)

• Phenotypic Weight Permutations (PWPs)

• Exact Role Permutations (ERPs), and

• Similar Role Permutations (SRPs).
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References to ‘permutations’ in the literature may refer to one or several of
these types of permutations implicitly. In this work the two types that we are
most concerned with are Phenotypic Weight Permutations (PWPs) and Exact
Role Permutations (ERPs).

Genotypic Weight Permutation (GWP)

This is the broadest category of permutations considered. Such permutations
occur frequently3 and have not been identified as being a concern regarding the
application of Evolutionary Algorithms. We introduce such permutations as they
are the easiest to calculate probabilities for and can be used to illustrate the
method which is applied to the other kinds of permutations.

In the context of evolving Neural Networks, Genotypic Weight Permutations
(GWP) are not typically phenotypically equivalent or even similar in functionality
or fitness. While each genotype will share the same values, they may not necessarily
be assigned to the same neurons in the same order. However, every Phenotypic
Weight Permutation (PWP) is also a GWP; as such the probability for encountering
a GWP pair provides a rough upper bound for that of the phenotypically-equivalent
PWP.

We expect GWPs to be common but to have no appreciable impact on
performance for most problems. Although GWPs are not a practical concern,
their simplicity will aid the explication of the method for probability calculation
presented in Chapter 4.

Phenotypic Weight Permutation (PWP)

Given a fully-connected feedforward Neural Network with one hidden layer of Nh

hidden neurons, we can form up to Nh!− 1 symmetric, phenotypically-equivalent
networks by permuting the neurons of the hidden layer. Each network contains
exactly the same neurons, arranged in a different order. Two neurons are exactly
the same if they are composed of the same input and output weights, in the same
order. This definition will be expanded in Section 3.2.2.

Exact Role Permutation (ERP)

Exact Role Permutations (ERPs) are a superset of Phenotypic Weight Permuta-
tions where the neurons need not have exactly the same weights; they are required
only to map the same function. An intuitive way to see how differing weight-sets
could result in identical behaviour is to imagine two neurons with weights which
both cause constant saturation of the neuron transfer function; thus while poten-
tially very different in terms of their weights, the neurons are outputing a constant

3For example with a binary genotype we only require that the two strings have the same
number of ones (and so the same number of zeroes). This will happen quite frequently and is
not typically a concern.
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value of zero or one (in the case of a sigmoidal neuron). Another example would
be when an odd transfer function such as tanh is used: flipping the signs of all
weights will result in the same function.

If the space of all possible neurons contains only neurons which can be con-
sidered to have unique functionality then the number of ERPs is the same as the
number of PWPs, i.e. |ERP | = |PWP |.

Similar Role Permutation (SRP)

Similar Role Permutations (SRPs) are a superset of ERPs and contain all pairs
of individuals which are composed of neurons encoding exactly identical or only
similar functions. The level of redundancy in the space is ultimately decided by
the definition of similarity used; the less strict the similarity criteria the more
redundant the space will be.

3.2.2 Definition

We now present our definition of the Permutation Problem. Given a fully connected
feed-forward Neural Network with one hidden layer, we may take a weighted sum
of the hidden neuron contributions in any order without affecting the function
encoded by the network as a whole. A direct consequence of this is that any
given network has up to4 Nh! permutations which while genotypically dissimilar
all encode the same function and therefore have the same fitness.

We can see why this is if we examine the equation for a single-layer, feedforward
Neural Network. For simplicity the output layer is composed of a single linear
output. The network is defined by,

g(x,w) =
h∑
i=1︸︷︷︸

evaluable
in any
order

[
wh+1,i tanh

(
n∑
j=1

wijxj + wi0

)]
+ wh+1,0, (3.1)

Where,

• n is the number of inputs,

• x is an (n+ 1)-vector of inputs (n inputs plus a fixed bias value),

• w is an ((n+ 1)h+ (h+ 1))-vector of parameters (weights),

4It is important to remember to account for the duplicate permutations formed due to
repeated allele values; therefore the number of permutations is only Nh! when all alleles are
distinct.



46 CHAPTER 3. THE PERMUTATION PROBLEM

{ {4 10 2 0 7 3

4 102 0 73

a)

b)

node 2node 1

node 2 node 1

4

10

2

7 3 3 7

42 10

a) b)

1 22 1

Genotype Network Interpretation (phenotype)

Interpret

Figure 3.1: An instance of the Permutation Problem: two networks composed of
the same hidden neurons but in a different order. While phenotypically equivalent,
the genotypes are incompatible for crossover: any recombination will result in
information loss. Of note however is that to form (b) from (a) the block of genes
for each hidden node must be swapped, and the output weights inverted. Adapted
from [YL97].

• wij is the weight for the contribution from neuron j to neuron i and

• h is the number of hidden neurons.

The part of the equation to note is the outer summation; when calculating
this sum the order of the terms is unimportant.

An example of the Permutation Problem can be seen in Figure 3.1. Here,
genotypes (a) and (b) are significantly dissimilar but in fact encode phenotypically-
equivalent networks. This equivalence is due to the fact that the hidden neurons
have been permuted; since neuron position is unimportant in this type of network
model the networks then have identical behaviour and so equal chance of being
recombined when selected under fitness-proportional selection.

If we apply any form of crossover operator to these genotypes we will inevitably
lose information from their respective shared distributed representations due to
duplication of one or more genes. If blocks of weights corresponding to whole
neurons are swapped, then we have a phenotypic permutation. It is worth noting
again that any phenotypic permutation is also a genotypic permutation (but not
vice versa). Figure 3.2 explains the mechanism of the Permutation Problem in
terms of recombination in more detail.

3.2.3 A General to Specific Ordering of Permutations

Discussion of the Permutation Problem is often hampered due to the fact that we
can consider the problem from a number of levels of abstraction, as illustrated
in Figure 3.3, though there is no established terminology for these levels. The
implications and possible severity of the problem changes at each level. As such,
proper discussion of the problem requires first clarifying where in this general-to-
specific ordering the Permutation Problem should actually sit.
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Networks with the same fitness but different solutions

Networks with identical neurons (same weights) but in a different order

Networks encoding the same function with different weights

Networks with neurons that perform the same function but with different weights,

in a different order

Networks with neurons that perform a similar function but with different weights,

in a different order

General

Specific

Figure 3.3: A selection of problems related to the recombination of networks, from
the most general (multiple solutions with identical fitness but possibly underlying
differences) to most specific (two networks with identical neurons in a different
order). It is important when discussing the Permutation Problem that we define
clearly at which level we place the problem, as this choice of placement is not
necessarily the same throughout the literature. Most research tends towards the
specific end of the scale.

Arguably there is no right answer to that question. Instead we couch it in
terms of where each treatment of the Permutation Problem in the literature
fits. This problem is compounded by the number of aliases for the Permutation
Problem. Each alias can in some cases indicate from which perspective a researcher
views the problem, i.e. at which level of the general-to-specific hierarchy their
understanding of the Permutation Problem lies, though this interpretation is
naturally subjective and so unreliable. The fact that these aliases are frequently
presented as being completely synonymous causes misunderstandings to arise
as while researchers may believe that they are discussing the same issue they
may in fact be speaking of closely related but distinct problems. This is not
often a problem when discussing the general issue of symmetry and equivalence
in a genetic representation, but it could lead to drastically different conclusions
regarding how ubiquitous the problem will be in practice, and therefore how serious
it is. As such, the establishment of naming conventions would aid discussion of
these problems and their relative severity.

3.3 On the Origin of the Permutation Problem

We now explore the earliest research into Neuroevolution where the concept of
the Permutation Problem was first discussed. We then present how its naming
conventions emerged, and discuss the two principal interpretations of the problem,
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namely whether we view it as involving permutations of identical neurons or
whether it is sufficient only that the neurons map the same functionality.

The first published reference to the problem of neurons which play similar roles
but appear in different positions appears to be in the work of Montana and Davis
in 1989 [MD89]. We note however that this problem is more general than the
Exact-Weight Permutation Problem, which requires that the neurons have exactly
the same weights. Montana and Davis describe this more general problem but do
not explicitly name it. It would appear however that the first to discuss and name
the Permutation Problem was Nick Radcliffe, on a prominent Genetic Algorithm
Mailing List in 19885 (see Appendix A). It would appear that the Permutation
Problem received significant discussion under different aliases around this time
(1989-1992 approx.) due to the increase in applications of Genetic Algorithms to
the optimisation of Neural Networks.

In this early work Montana and Davis provide significant insight into the
Permutation Problem. At no point is the problem named, but the issues involved
are clearly discussed. At the time of its publication the application of Evolutionary
Algorithms (particularly Genetic Algorithms) was still in its infancy; Montana and
Davis cite the lack of success in contemporary work such as that of Whitley [Whi89]
in applying GAs to Neural Network optimisation. The problem is identified and
described without citation to previous work and without use of any specific
naming convention for it. Interestingly, the definition even goes further than
other, later definitions by noting that the symmetry of the Permutation Problem
can be present in networks with more than one layer, asserting that, “For a fully
connected, layered network, the role which a given node can play depends only on
which layer it is in and not on its position in that layer”.

Montana and Davis present a number of variation operators (e.g. variants of
crossover and mutation) which aim to address some perceived problems in the
application of GAs to NN. The operator of particular interest is the one that
they term ‘CROSSOVER-FEATURES’. The purpose of this operator is to reduce
the, “dependence on internal structure” (introduced by the Permutation Problem
symmetry) by rearranging nodes in order to match up those which play the same
role such that they appear at the same point on their respective genotypes. The
method for determining and matching roles of neurons is not discussed beyond
stating that it involves a process of presenting each neuron with certain inputs and
comparing the response. As the metric for or conditions under which two neurons
would be considered to be playing the same role is not given we assume that the
method was simplistic in nature, for example each neuron is presented with a
range of inputs and its outputs are used for the similarity comparison. Neurons
with similar outputs are arranged so that they occupy the same position in each
parent network in order to minimise disruption when they are recombined. This
similarity measure could for example be a threshold on the mean squared error as
calculated between the two vectors of neuron outputs given the same inputs.

5Confirmed through personal communication.



50 CHAPTER 3. THE PERMUTATION PROBLEM

The principle here is that “The greatest improvement gained from this operator
over the other crossover operators should come at the beginning of a run before
all members of a population start looking alike.” [MD89]. This same hypothesis,
that the problem is only going to cause disruption until the population has largely
converged is later echoed in [FS08] although this is not tested in detail. From
an intuitive perspective it would seem clear that as the population converges
and individuals become more alike, the likelihood of disruption decreases simply
because the magnitude (in terms of genes affected) of applying crossover is
diminishing with the diversity. In this way, we can consider crossover to be a type
of macromutation, the magnitude of which is defined by the current diversity of
the population.

We now explore this idea of explicit (exact-weight) permutations vs. those
which simply fulfil the same role in the network but may or may not have exactly
the same weights.

3.3.1 Explicit Permutations vs. Similar Roles

In reviewing the literature on the Permutation Problem (under its various aliases)
a problem which hampers discussion is that it is not always explicitly stated which
kind of permutations the authors are referring to. The most ‘obvious’ kind of
symmetry is found when the neurons in a particular layer are rearranged. There
is then the more subtle symmetry which is introduced in addition to the previous
symmetry, where more than one neuron (i.e., more than one set of weights)
may fill a particular space in a network without affecting the network function
significantly. The qualifier significantly is important here; while in some cases
authors will be referring to cases where the network function is identical (perfect
or exact-weight symmetry), there will be other cases where the requirement is
only that the network function remain largely unchanged. As it is possible for the
network function to change without network fitness being affected (if the fitness
function is not particularly sensitive, e.g. a change in network function brings the
network closer to its decision boundaries but does not cross them, resulting in the
same classes being predicted for a classification problem), this may be the criteria
under which two networks may be considered equivalent. In this case there will
be distinct neurons which can fill the same space in the network due to their
equivalence of roles (equivalent-role symmetry). In this section we identify the
perceived view of the major works in the literature on the Permutation Problem,
specifically whether the exact-weight or equivalent-role symmetry is considered.
This division of the literature is summarised in Table 3.1.

Montana and Davis identify that the role a neuron plays in a network is
dependent only on which layer it is in, not on where it is in that layer [MD89].
While this is identified as being a problem when recombining networks it is not
explicitly named. The example given to illustrate this however only covers the
symmetry found by exchanging the weights of different neurons in the same
layer. As such while the term ‘role’ is used, it would appear that the authors
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Paper Explicit Permutations Equiv. Roles Unspecified

[MD89] X?a

[WSB90] X?
[Rad90] X

[BMS90] X

[SWE92] X?
[Han93] Xb

[ASP94] X

[Whi95] X

[YL97] X?
[HNI04] X

[FS08] Xc

[DHAI08] X
a In this work, both kinds of problem are described but not differentiated
explicitly. As such it is difficult to determine which interpretation the
authors intended. It depends on the interpretation of “identical sets of
connections”; this could be identical connection patterns or identical
weights (a question mark indicates that it is not explicitly stated or
otherwise unambiguously clear which column the tick should be in,
though the ticked column is favoured).

b This is defined only for Radial Basis Functions (RBFs) which have
local receptive fields which have different characteristics to typical
sigmoid-based networks.

c Here both the explicit permutation perspective is presented along
with Hancock’s RBF example. It is therefore not obvious which
interpretation of the problem that the authors ascribe to. Confirmed
through personal communication.

Table 3.1: A list of investigations into the Permutation Problem ranging from
1989-2008, organised by their perspective on the problem. In this case it is
possible to divide the majority of work into the group which appears to view the
problem from an exact-weight permutation perspective, and from an equivalent
role perspective. A question mark (?) indicates uncertainty for that work.

only considered exact-weight permutations. That said however, the method for
determining the role of the neuron is based not on its parameterisation (the
weights) but on its outputs given certain patterns, suggesting an equivalent role
perspective on the problem on behalf of the authors.

A contemporary investigation into the application of GAs to NN optimisation
is that of Whitley et al. [WSB90]. In it they coin the term “Structural/Functional



52 CHAPTER 3. THE PERMUTATION PROBLEM

Mapping Problem” to describe what is essentially the exact-weight permutation
problem. The problem is discussed in terms of a network which requires the
mapping of three ‘tasks’ A, B and C. We then have two networks which each
contain three neurons labelled 1, 2 and 3 which are said to be mapping one task
each. One network encodes them in the order 〈1, 2, 3〉 while the other does so in
the order 〈3, 1, 2〉.

While this presentation of the problem implies on some level the notion of
roles and the fact that more than one neuron may fill this role (thus suggesting a
same-role view of the Permutation Problem), Whitley et al. then go on to talk
about hidden neurons with “identical” sets of connections: “In general, when two
or more hidden units have identical sets of connections (to the input and output
layer, for example) then the structural/functional mapping will be arbitrary: these
nodes can swap their functionality without altering the functionality of the net
as a whole” [WSB90]. This view arguably implies the more restrictive exact-
weight perspective on the problem. The notion that the authors had a similar
role perspective is somewhat contradicted by their reference to how the neuron
replacement transformations of the Structural/Functional Mapping Problem occur
“without altering” network functionality, rather than “without altering significantly”,
which would imply that neurons which mapped approximately the same function
would also be considered in the symmetry. This is not stated explicitly however,
and is therefore open to interpretation.

As the Permutation Problem can be considered from the perspective of wishing
to avoid recombining significantly different solutions, any measures which ensure
that we are searching around one solution only would effectively prevent the
Permutation Problem from occurring. The empirical data of the investigation
by Whitley et al. indicates that a small population size (in this case around 50
individuals) will typically contain only one solution [WSB90]. Their analysis
“indicates that in these small populations only a single solution is being pursued
by the algorithm. Therefore the problem of recombining disparate solutions does
not arise.”. It is further claimed that the performance of the algorithm comes from
stochastic genetic hill-climbing as opposed to intelligent hyperplane sampling as
the Schema Theorem might suggest [WSB90]. Rather than recombining short,
high fitness schemata, a ‘cloud’ of points around the one solution is sampled, with
the population moving iteratively towards higher fitness regions which have been
discovered locally.

Whitley et al. propose training networks where the neurons of the hidden
layer have different (rather than full or uniform) connectivity so that swapping of
neuron weight positions does not result in an equivalent network. This however
adds the problem of discovering a suitable architecture. In training networks
for the 2-bit adder problem they find that the minimally-connected version is
easier to train than the fully-connected architecture. They take this as evidence
to support the hypothesis that such avoidance of uniform connectivity avoids
the Permutation Problem, though as other confounding factors are not taken
into account it is not possible to say whether this is the deciding factor here.



3.3. ON THE ORIGIN OF THE PERMUTATION PROBLEM 53

In the first instance, it would be necessary to demonstrate that in the case of
the fully-connected architecture the Permutation Problem is occurring frequently
enough to have a significant effect on the progress of the optimisation process.

In a contemporary work, Belew et al. refer to two ways in which networks can
be symmetrical [BMS90]:

• Rearrangement of the hidden neurons (assuming full connectivity), as previ-
ously discussed.

• Given an odd transfer function, flipping the signs of the weights results in
the same function.

Belew et al. then refer generally to the idea of correspondence among hidden
neurons, effectively describing the concept of similar roles. It is clear in this case
that it is not just the exact-weight case that is being considered here. They do
however cite work which demonstrates that minor changes in the weights can have
a large effect on fitness. As such it would appear that when referring to similar
roles the intended interpretation is different weight sets that produce the same
projection in the hidden space.

Belew et al. consider the recombination of two relatively high fitness parents
which have discovered different solutions as well as the Permutation Problem.
They consider this problem to be “less subtle but just as problematic” as that
of the problem of isomorphic solutions which can be formed by permuting the
hidden neurons. Regarding how problematic these issues are they consider the
symmetry introduced by the Permutation Problem to be, “such a devastating and
basic obstacle to the natural mapping of networks onto a GA string that we might
consider ways of normalizing network solutions prior to crossover”.

Regarding how to circumvent or avoid the permutations, they suggest that
the fact that the input and output layers are ‘anchored’ (i.e., constant and non-
arbitrary) might allow the identification of similarly-functioning hidden neurons.
They then assert however that, “establishing a correspondence among hidden units
of two three-layer networks that have been trained to solve the same problem
appears to be computationally intractable, even when we assume that the only
difference between the two networks’ solutions is a permutation of the hidden
units”. Normalisation of the networks prior to recombination is therefore deemed
infeasible, suggesting that recombination is not an effective operation to perform
when optimising neural networks.

Belew et al. agree with Whitley et al. [WSB90] regarding the small population
hypothesis, stating that, “If very small populations are used with the GA, there is
not ‘room’ for multiple alternatives to develop.”. They offer the hypothesis that,
barring stochastic effects, the first discovered solution will come to dominate the
population. The reality for any suitably difficult problem is likely to be different
however as it is not usually the case that it can be said early on whether a solution
has been discovered (rather, several individuals may have very similar fitness), and
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Figure 3.4: Recombination of two networks composed of neurons which define
local receptive fields. Each parent could be said to have similar neurons (in that
they are active for similar regions). These similar neurons appear at different
positions in the network genotypes however, resulting in repetition of similar
neurons in the child networks. Figure taken from [Han93].

the genetic drift introduced by the imperfect sampling of the selection mechanism
need to be taken into consideration.

A contemporary investigation by Radcliffe [Rad90] expressed surprise that
various recent successful results by Whitley et al. [WSB90] had been achieved
without addressing the Permutation Problem. Radcliffe reiterates the small
population argument of Belew et al., but further notes that in the same recent
results by Whitley [WSB90] increasing the population size from 200 to 1000
produced an improvement in performance rather than the expected decrease, as
increasing the population size should have increased the number of permutations.

Radcliffe, in his thesis, presents one of the more in-depth analyses of the
problem during the period of time where discussion reached its peak [Rad90]. In
it, he clearly refers to the swapping of functionally homologous parts of networks,
thus referring quite generally to the symmetry introduced by neurons (or even
subnetworks) which perform a similar role.

Hancock presents the problem not in terms of sigmoidal neurons but uses
neurons with localised receptive fields (RF) to demonstrate the problem [Han93].
Looking at Figure 3.4 we see a 2D projection of the receptive fields of two networks.
In a geometric sense the neurons of each network can be said to be similar, though
defined in a different order in the genotype. Immediately we have the notion of
neuron similarity, though this similarity may confuse the issue when we switch to
a sigmoidal network (arguably the more common type of network used). Once
we switch to a distributed representation of a problem, encoded using sigmoidal
neurons, we lose the intuitively simple method of quantifying neuron similarity
offered by the receptive fields (which might be defined in the 2D sense by a center,
and a variance for each dimension, giving the spread and shape of its field). We
see in figure 3.4 that the offspring networks over-sample parts of the input retina
while other areas are under-sampled. The idea is that such recombination is
unlikely to produce offspring with better fitness than their parents. How can this
idea be transposed onto networks with distributed representations? In this case
the possibility that the Permutation Problem may manifest due to neurons which
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are similar is discussed but this discussion is not extended beyond neurons with a
local receptive field.

Schaffer, Whitley and Eshelmann provide a survey of the state of the art of the
application of Genetic Algorithms to the optimisation of Neural Networks, and in
doing so cover the Permutation Problem in some detail, though they refer to is
at the Competing Conventions problem [SWE92]. The problem is demonstrated
through the permutation of the hidden neurons in a network with explicitly labelled
connections. The examples therefore all imply the exact-weight perspective of the
problem. However, when referring to networks which are permutations of each
other they are described as mapping “nearly the same function”. If the neurons
have simply swapped position in the hidden layer then the function should be
identical, not merely similar. It is possible that this is in reference to the result
of crossovers that do not occur on a neuron boundary and therefore disrupt
the mapping, though again this is somewhat unclear. Such a crossover will not
necessarily produce a function that is “nearly the same” however; there is some
doubt as to the correct interpretation of the given definition of the problem and
therefore the view of the authors regarding which type of permutation is under
consideration.

The term ‘Competing Conventions’ was introduced by Schaffer, Whitley and
Eshelman [SWE92]. While this work cites both that of Radcliffe [Rad90] and
Whitley et al. [WSB90], the new label is introduced to describe what has previously
been labelled the Structural/Functional Mapping Problem and the Permutation
Problem. As previously discussed, in this work Schaffer et al. explicitly refer to
networks with identical topologies and (selections of) weights, stating that, “the
only difference in the phenotypes is the switching of the two hidden nodes”. While
the definition given does not preclude there being other differences, the single
example does not suggest others. The problem is presented as being primarily of
the GA being required to overcome the “arbitrariness of the representation (the
convention)”, of which the GA can have no prior knowledge. The assumption
here is that the GA will be required to work with differing/competing conventions
frequently enough such that the search process is hindered. Schaffer et al. note
that, “the number of competing conventions grows exponentially with respect to
the number of hidden neurodes, since each permutation representing a different
ordering of hidden neurodes represents a different convention”. It is not clear
however why the growth is characterised as being exponential as the number of
permutations grows at a near-factorial rate which might be better described as
being super-exponential. Responding to the work of Hancock [Han93], which
found no evidence that the Permutation Problem is severe, it is suggested that
the reason the problem did not manifest is due to the use of small populations
and high selection pressure.

Hancock investigates the Permutation Problem and finds that ‘solving’ the
problem decreases algorithm performance. This is taken as evidence of permuta-
tions actually being “beneficial” on some level [Han92]. While this wasn’t stated
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explicitly, increasing the population size would increase the number of permuta-
tions present simply through having more chances to appear in the population.
While the increase in performance can’t be attributed to permutations without
first eliminating confounding factors, the idea that permutations may be beneficial
some how was discussed in the work of the time. The possible benefit extended
as far as adding them to the population, though Hancock notes that, “there
is little mileage in adding in permutations” [Han92]. Hancock asserts that the
Permutation Problem has two important facets. The first is a benefit due to
the increased number of possible solutions; the other, a difficulty in bringing the
disparate parts of the solution together. The symmetry does indeed reflect all
maxima many times, but does this help or hinder the search process? It would
appear that Hancock did not consider that every possible network is reflected: all
maxima, near-maxima, all the way down to all minima. This is covered in more
detail in Section 3.5.

A later investigation by Hancock again equates the Permutation Problem with
the Competing Conventions Problem, and concludes by suggesting that neither is
serious in practise [Han93]. This conclusion was based on the fact that ‘solving’ the
problem by ‘resolving’ permutations using special recombination operators which
sort “hidden unit definitions by overlap prior to crossover” fared more poorly than
regular crossover. This leads to the contention that a regular GA is able to ‘resolve’
permutations without assistance. Implicit here is the assumption that there are
indeed permutations in the population during the running of the GA; something
that is not demonstrated or stated explicitly. Without this demonstration it is
not possible to confidently draw conclusions based on the presence or lack thereof
of permutations.

As it is the recombination of permutations that is theorised to cause the decrease
in fitness in general, investigations into the Permutation Problem invariably
discuss the efficacy of crossover operators in Neuroevolutionary algorithms. The
effectiveness of crossover cannot be said to depend solely on the Permutation
Problem alone (it is also necessary to consider the kind of crossover performed,
crossover rate, number of crossing points etc.). Hancock states that, “The extent
of the permutation problem may be assessed by comparing the performance of
GAs with and without crossover enabled”. A problem with this statement is that
the removal of crossover from an algorithm does more than simply prevent the
recombination of permutations. As crossover is a variational operator, its removal
alters the balance between selection and variation, exploration and exploitation,
which is likely to affect performance irrespective of the presence of permutations.
What must be done to test such a hypothesis is to first determine how often
permutations are recombined, and then test the algorithm without crossover,
modifying the mutation rate to match the previous level of variation as closely as
possible (a method which could be used to do this is examined in further detail in
Section 5.2).

A frequently cited study of the problems with applying crossover in Neuro-
evolution is that of Angeline et al. [ASP94]. This work explicitly refers to the
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Figure 3.5: The problem of competing conventions. The genotypes A and B
contain the same neurons and connections but in a different order. Crossover may
create a network which contains duplicated structures, reducing its computational
capability. Figure adapted from [ASP94].

Competing Conventions problem (citing Schaffer et al. [SWE92]) as being related
to networks that share both a common topology and weights. Angeline et al. define
the Permutation Problem6 as referring to networks with common topology and
weights, implying that the problem stems from the symmetry introduced by exact-
weight permutations. The idea that multiple solutions exist for each problem is
discussed but not in terms of the Permutation Problem or similar-role neurons.
They refer instead to the kind of alternative solutions found by running the same
algorithm multiple times, producing alternative solutions that are incompatible
such as those in Figure 3.6. Due to this, the perspective in this work appears
to be that of exact-weight permutations. Angeline et al. contend that GAs are
simply not well-suited for evolving neural networks due to three forms of deception
caused by the genotypic representation and its interpretation as a network.

The first form of deception is said to be the Competing Conventions problem,
where the concern is over repeated elements. The example given to illustrate
this can be seen in Figure 3.5. This marked a change in view of the Permutation
Problem, as in this paper the possibility of permutations being caused by neurons
which map same/similar projections in the hidden space is not alluded to. Rather,
the negative effect of the Permutation Problem is presented as being caused by
repeated components in offspring from parents which are identical except for
the order of their hidden neurons. This view limits the scope of the problem
considerably and invites the question, under what circumstances would we expect

6Though they use the alias Competing Conventions, introduced by Schaffer et al. [SWE92].
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the parents selected for crossover to have neurons of identical weights arranged in
different orders? This question is examined in Chapter 5.

The second form of deception is said to stem from the strong likelihood that
there are multiple solutions in the search space, not caused by the Permutation
Problem symmetry but simply by solutions with completely different weights, i.e.
different distributed representations for the same solution. The recombination of
such solutions is also expected to result in poor quality offspring as the solution
in each case is distributed over some or all of the hidden neurons such that
recombining part of one and another is likely to produce offspring which do not
resemble their parents.

The final form of deception involves networks which differ topologically. In
this work we consider fully-connected fixed-architecture networks as this is what
is typically used to demonstrate the Permutation Problem. The problem of
recombining networks with different architectures which may nevertheless be
related in some way is investigated in [Sta04], where a custom crossover operator
is presented which aims to address this issue (though not the Permutation Problem
itself) and is to some extent successful, although the algorithm itself gains only
slightly from its use [Sta04].

Angeline et al. [ASP94] present an algorithm which evolves both the structure
and parameters of the network without using any form of recombination. Networks
are evolved in the style of Evolutionary Programming [Fog94], where various
custom mutation operators are defined. This algorithm, GNARL (GeNeralized
Acquisition of Recurrent Links), is able to solve problems of reasonable complexity,
leading the authors to conclude that crossover is simply not necessary and worth
avoiding, stating, “the prospect of evolving connectionist networks with crossover
appears limited in general”. The authors then go on to recommend that operators
should respect the distributed nature of the solutions encoded by connectionist
networks, and that crossover operators in common use fail this test. While this
appears to be a desirable characteristic to aim for when designing a reproductive
operator, it does not necessarily mean that the plain crossover operator which has
no such ‘respect’ is not of practical use.

In what is perhaps the most cited paper in the field of Neuroevolution, Yao
exemplifies the Permutation Problem using networks which have identical topology
and weights (thus aligning the work with that of Angeline et al. [ASP94]), where
the hidden neurons have been swapped [Yao99]. The Competing Conventions
Problem is identified here as an alias for the Permutation Problem. Regarding
the severity of the problem and its relationship to crossover Yao states that, “The
permutation problem makes crossover operator very inefficient and ineffective
in producing good offspring”. Yao then identifies the need for more research in
order to further understanding of the impact of the Permutation Problem on
the evolution of architectures; an area of investigation that has hitherto received
little attention. As this work was a highly cited review paper we can assume that
it was influential in the field of Neuroevolution. At this stage the evidence is
overwhelmingly in favour of the Permutation Problem as a serious problem which
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invalidates crossover as a suitable operator for evolving Neural Networks. This
view has essentially become one of the fundamental or at least commonly-held
beliefs of the field.

Some later work which reiterated the concerns of some of the earliest work
that the Permutation Problem would be unlikely to occur but that nevertheless
crossover was a poor operator was that of Stagge and Igel [SI00]. This investigation
concerned the more general problem of network isomorphism in networks of any
architecture. Stagge and Igel assert that if only canonically-labelled networks are
stored in the population, the Competing Conventions / Permutation Problem is
effectively solved. Regarding the expected decrease in disruption from solving the
problem however, Stagge and Igel note that, “Experiments show that there are
not so many isomorphic nets present in one generation as might be expected”,
suggesting that an enforced canonical representation would not necessarily cause
a significant reduction in disruption caused by the recombination of isomorphic /
permuted networks, or rather that there are few such networks in the population
at any given time. No explicit numbers are given for the rate of occurrence of
isomorphic networks though it is stated that, “...the probability of selecting two
competing conventions of one net for recombination is rather small”. Despite the
“rather” small probability that two competing conventions be recombined, the
conclusion of this work is that crossover is not a suitable operator for the evolution
of Neural Networks.

3.3.2 Challenging the Severity of the Problem

Work which challenges the notion that the Permutation Problem is a serious
concern is relatively rare; most such work was published in the early days of
research into Neuroevolution [MD89, Han93]. Some major works in the literature
are listed in Table 3.2, categorised by their use of particular naming conventions
for the Permutation Problem and also their conclusion regarding the severity
of the problem. Of the more recent work is that of Froese and Spier, which
presents again the notion that a converged population will not be subject to the
negative effects of the Permutation Problem [FS08]: as noted by Belew et al. if
the population is small and selection pressure high, there will not be “room” for
permutations in the population [BMS90].

Froese and Spier extend this idea to all populations, irrespective of size or
selection pressure, suggesting that the nature of evolutionary search is for it to
continue in a largely converged manner. The hypothesis put forward is that the
convergence of the population is inevitable, and that progress will be made by
the algorithm traversing nearly-neutral networks in the search space [FS08]. This
view is somewhat in line with that of Whitley in a previous work, i.e. that the
progress made by Neuroevolutionary algorithms is not due to efficient sampling of
high-fitness schemata but is instead a process of genetic hill-climbing [WSB90].

The presented “Convergence Argument” does not preclude the presence of
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Paper Permutation
Problem

Competing
Conventions

Struc./Func.
Mapping

Severe?

[MD89] Noa

[WSB90] X* Yes
[Rad90] X* Yes
[BMS90] X No
[SWE92] X* Yes
[Han93] X X X No
[ASP94] X Yes
[Whi95] Xb X Yes
[YL97] X Yes
[Yao99] X Yes
[HNI04] X Yes
[FS08] X X X No

[DHAI08] X Yes
a The results of this paper show no difference between uniform cros-
sover and a special permutation-avoiding crossover operator. While
the paper attempts to solve this redundancy, it is not labelled as
being a serious obstacle to the GA.

b Again it is unclear which interpretation is being offered in this paper,
though the examples all refer to explicit permutations of blocks of
weights; there is no explicit consideration of similar solutions.

Table 3.2: A list of investigations into the Permutation Problem ranging from
1989-2008, organised by the naming convention(s) used in each. Multiple ticks
indicate the authors suggesting that either term is an acceptable synonym for the
Permutation Problem. An asterisk (*) indicates when the term was first coined.

permutations, instead it is presumed that the initial population contains permuta-
tions, the elimination of which is a side-effect of the convergence of the population.
The population is then expected to move through the search landscape as a largely
converged ‘cloud’ of points. Regarding the severity of the problem Froese and
Spier contend that that, “widespread concern with the permutation problem in
the literature stems from a disregard of the generally converged nature of practical
GA-based search”. They then go on to note that past conclusions regarding
the problem have been based on “theoretical” arguments (which we would call
intuitive arguments or thought experiments) rather than studies into the practical
ramifications of the problem.

With the exception of the discussion of Hancock’s receptive fields example, this
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work appears to be concerned only with permutations of a given network, rather
than the additional symmetry introduced by also considering similar neurons.
In this work it is suggested that the Permutation Problem is not a serious
consideration in practise; this is supported by empirical work, leading to the
conclusion that, “...it is unlikely that several distinct genetic permutations of the
same phenotypic solution will be present in the population at the same time”. As
such this work appears to take the exact-weight perspective7.

3.4 A Problem of Incompatible Representations

While the Permutation Problem appears severe from a theoretical standpoint, the
few empirical studies carried out thus far have showed that in practice the problem
may not be as severe as previous thought [MD89, Han93, FS08]. A problem which
occurs more frequently and perhaps deserves more attention is shown in figure 3.6:
we have the decision surface for two networks (a) and (b) which each map the
XOR function but do so by partitioning the hidden space in markedly different
ways (as illustrated both by the visual interpretation and the weights involved).
The two genotypes are not permutations of each other, yet the offspring formed
via an application of 1-point crossover are significantly different to their parents
both in functionality and in fitness. Both offspring networks have lost a significant
portion of the necessary decision surface and (c) has also suffered a loss of range.

The Permutation Problem could be considered to be a special case of the more
general problem exemplified here which covers all cases where the recombination
of two Neural Networks results in offspring of very low fitness. This problem,
which we term the Incompatible Representations Problem (IRP), arises due to
fundamental incompatibilities between the distributed representations of two
(possibly equivalent) networks.

Given two arbitrary Neural Networks which we wish to use as parents in an
evolutionary process we can characterise their relative (in)compatibility in terms
of two categories: structural and parametric.

• Structural incompatibility arises when the topologies of the networks are
different. This will commonly be characterised by the two networks having
genotypes of different length. The NEAT algorithm overcomes this problem
(to some degree) by globally identifying each gene in the genotypes in such
a way that they can later be recombined with reduced disruption [SM04].
Other algorithms have avoided recombination [ASP94, Yao99] or employed
fixed architectures.

• Parametric incompatibility occurs when given two networks of identical to-
pology which either 1) have fundamentally different internal representations

7While this may be implied by the paper, the authors of this work are aware of the similar
neuron perspective (confirmed through personal communication).
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Figure 3.6: In this figure we have two networks (a) and (b) which map the XOR
function. The solutions each have different weights (i.e. they were not formed
through permutation of the hidden units). Using one-point crossover we can see
the deleterious effect recombining these networks has, producing offspring networks
(c) and (d). Network genotypes are of the form (h1
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The transfer function of the hidden and output neurons is a steep sigmoid with
variable bias.

of the hidden space (as in figure 3.6) or 2) are permutations of each other
and therefore incompatible as per the Permutation Problem.

This more general problem of incompatibility between network representations
is one which will occur more often than the Permutation Problem8 but will have
similar deleterious effects and so arguably warrants consideration when designing a
Neuroevolutionary algorithm. This problem is not addressed by major algorithms
in the literature such as NEAT [Sta04], ESP [GM03a], CoSyNE [GSM08] or EPNet
[YL97] (though the problem is addressed on some level when EPNet is combined
with Negative Correlation Learning [YI08].

3.5 Effect on the Search Space
The symmetry introduced by the invariability of a fully-connected feedforward
network under permutation of its hidden neurons has often been cited as causing
a (potentially) unimodal search landscape to become multimodal. Schaffer et
al. consider networks which come from different peaks in the search space to be
competing conventions, the recombination of which is to be avoided.

How does this symmetry affect the search space? It certainly causes it to
be highly redundant: each point has anything from zero to Nh! − 1 equivalent

8Due to its relaxed constraints, i.e. the two networks need not be permutations of each other,
it requires only that their internal representations be significantly different.
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solutions. Given any point that we know the fitness of, we then know the fitness
of up to Nh!− 1 other points in the search space. There are therefore a multitude
of neutral networks in the search space. These networks appear to be of little
practical value however, as while the symmetry allows the algorithm to move
great distances in the genotype space for ‘free’ (i.e. fitness is known without using
the objective function), each neighbourhood is the same: searching in one cloned
neighbourhood versus another will not change the performance of the algorithm,
suggesting that such a ‘jump’ operator has little utility. If by switching the order
of the hidden neurons we could jump ‘for free’ to another area of the search space
that had a different topology, we may be able to escape local minima by jumping to
another area of the search space which contains a network of the same fitness (the
symmetrical solution) but contains points of higher fitness close by. Unfortunately
this is not the case; the search space is essentially repeated. One might see it
as the same search space being repeated in a kaleidoscopic fashion. Despite this
massive redundancy, previous work looking at the removal of this redundancy has
suggested that such a removal can result in no change in performance [MD89], an
increase in performance [DHAI08] or a decrease performance [Han93]. Hancock
noted that the Permutation Problem provided, “a beneficial increase in the number
of possible solutions” [Han92]. While the number of optima increases, so do the
number of all other points: all near optima, local optima, right down to all minima.
While we may think of this as a benefit (we have more solutions spread throughout
the space), we simply have the same search landscape repeated on a massive scale.
Perhaps the reason why this redundancy does not appear to harm the search
overly negatively is because if the search space of unique networks is repeated 10
times, the full search space may have increased in size 10 times but the number
of optima increased by the same factor, so we are still just as likely to pick the
optima as we were before. Radcliffe has previously shown however that this is not
necessarily the case: if we assume without loss of generality that there is a single
optimum point characterised by a genotype 〈a a a〉 then in the redundant space
there will still only be one optimum. Had the optimum been 〈a b c〉 then there
would be 3! = 6 optima in the redundant space. This is discussed in more detail
in Chapter 6.

3.6 Chapter Summary

In this chapter we have identified and defined four types of permutation, indicating
the types that we are interested in and their significance. We then presented a
definition for the Permutation Problem which is compatible with the types of
interest, demonstrating how in a fully-connected feedforward network the order
of evaluation of contributions from the hidden neurons is not significant.

We then investigated the origin of the Permutation Problem, particularly
where the terminology and its aliases have emerged from, and how these aliases
have affected understanding of the problem. The interpretation of the problem in



64 CHAPTER 3. THE PERMUTATION PROBLEM

the literature is then explored, particularly in terms of whether the problem is
generally seen to be concerning exact-weight permutations, or exact/similar role
permutations. As the choice of interpretation could affect the practical severity of
the problem it is essential to understand the context of each work in the literature.
The general-to-specific ordering of types of permutations was then discussed. This
is another way, closely related to the four types of permutation, in which different
works may differ in their implicit interpretation of the problem. We then discussed
an alternative problem which may be confused with the Permutation Problem
which we term the Incompatible Representations problem, where networks with
similar functionality but completely different weight sets are recombined to produce
offspring networks of low fitness.

Finally we discussed how the search space is affected by the Permutation
Problem. This is explored in greater detail in Chapter 6.



Chapter 4

On the Probability of its
Occurrence in the Initial Population

4.1 Introduction

In this chapter we investigate how often the Permutation Problem is likely to
occur in a uniformly-initialised initial population from a probabilistic perspective.
Previous work has suggested that the Permutation Problem occurs rarely [MD89,
Rad90, FS08]. This previous work has however not given any explicit probabilities
or empirical estimates on how often it is likely to occur. In the following sections
we present exact probabilities and rates of occurrence for the problem and show
that the problem does indeed occur rarely. This work forms the basis for our
testing of the hypothesis that this rarity is due to there being very few or no
permutations in the initial population, and the hypothesis that given a population
containing few or no permutations, the typical genetic operators do not readily
produce permutations. These issues are explored further in Chapter 5.

We begin by distinguishing between two possible types of permutation, geno-
typic permutations, where two genotype strings are permutations of each other,
and phenotypic permutations, a subset of the genotypic permutations where whole
neurons (i.e. blocks of weights) have been permuted as opposed to just single
weights (more detail given in Section 3.2.1). The latter definition is the common
interpretation of the Permutation Problem in the literature and the interpreta-
tion we use in this chapter. We present an equation for the probability that a
pair of individuals drawn uniformly are genotypic or phenotypic permutations of
each other. This is then generalised to populations of any size, allowing for the
calculation of the expected number of permutations in the initial population.

Using this equation to examine even simple network spaces demonstrates the
low probability of occurrence of either form of the problem in the initial generation
with a range of representations. These results support those of the empirical
investigation (Chapter 5), where the number of permutations in the population is
determined through explicit counting and is shown to agree approximately with

65



66 CHAPTER 4. ON THE PROBABILITY OF ITS OCCURRENCE

the predicted value.

4.2 Genotypic Permutations

In this section we outline the method for calculating the probability that two
randomly-drawn individuals will be genotypic permutations of each other. We
then generalise this to arbitrary population sizes.

Given an allele alphabet α and string length l we can fully enumerate all
|α|l possible strings, where |α| is the cardinality of the alphabet. This space of
strings can be decomposed into groups where each group contains all strings with
a particular selection of alleles, in any order. There are ((|α|l )) such groups, where
((nk)) is the number of ways to select subsets of size k from n items with repetition.
This is the multinomial extension to the binomial coefficient where,((

n

k

))
=

(
n+ k − 1

k

)
. (4.1)

We are interested in the probability of picking two distinct strings from the
same group. For example, the group which contains strings with one copy of allele
one and three copies of allele two, or the group which contains strings with two
copies of allele one and two copies of allele two and so on, for all possible selections
of allele values. Once we pick one string, the number of possible permutations
that can be formed from it determines the size of the group and so the subset of
strings which, if chosen, would form a pair which are permutations of each other.

For two allele values and genotype length l we can calculate the probability
that a pair of individuals drawn at random are permutations as

P (2, l) =
l∑

i=0

(
l!

i!(l−i)!

)
2l

(
l!

i!(l−i)!

)
− 1

2l
.

For three allele values this would be calculated as

P (3, l) =
l∑

i=0

l−i∑
j=0

(
l!

i!j!(l−i−j)!

)
3l

(
l!

i!j!(l−i−j)!

)
− 1

3l
.

The equation generalises to alphabets of length n as

P (n, l) =
l∑

i1=0

l−i1∑
i2=0

...

l−(
∑n−2 i)∑
in−1=0

(
l!

(
∏n−1
j=1 ij !)(l−

∑n−1
k=1 ik)!

)
nl

(
l!

(
∏n−1
j=1 ij !)(l−

∑n−1
k=1 ik)!

)
− 1

nl
.

(4.2)
Figure 4.1 shows this probability calculated for a range of alphabet cardinalities

and string lengths.
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Figure 4.1: The probability Pperm that a pair of individuals (drawn uniformly
from a solution space defined by the number of alleles |α| and string length l) are
genotypic permutations of each other.

To illustrate the strategy behind this arrangement we can expand the equation
for the case of a binary alphabet and string length 4:

P (2, 4) =
4∑
i=0

(
4!

i!(4−i)!

)
24

(
4!

i!(4−i)!

)
− 1

24

=

((
4!

0!4!

)
24

(
4!

0!4!

)
− 1

24

)
+

((
4!

1!3!

)
24

(
4!

1!3!

)
− 1

24

)
+((

4!
2!2!

)
24

(
4!

2!2!

)
− 1

24

)
+

((
4!

3!1!

)
24

(
4!

3!1!

)
− 1

24

)
+((

4!
4!0!

)
24

(
4!

4!0!

)
− 1

24

)
.

Here we can see that the probabilities of drawing two distinct strings from
each possible group, for example the group with one copy of allele one and three
copies of allele two (of which there are 4!

1!3!
= 24

1·6 = 4) are considered, and the
union of these disjoint events is taken which gives us the probability that we select
two distinct strings from any one of the groups.

If we take X to be a random variable representing the probability of encoun-
tering a pair of permutations given a particular permutation space, then the value
of interest is its expectation which tells us how many permutations we can expect
to see on average when drawing pairs at random. Given then the probability that
a pair of individuals drawn at random are permutations of each other, we can
calculate the expected number of permutations E(X), which for a pair may be
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Figure 4.2: Expected number of permutations Eperm(p) for a range of population
sizes p, for 1) a genotype space of 21 alleles with string length 9 (genotypic
permutations) and 2) for a phenotype space of a 3-input, 1-output, 3-hidden
neuron neural network (phenotypic permutations) with a weight space of size 5.
These network representations are close to that of the empirical experiments of
Section 5.2.

either zero or one:

Eperm(X) = (0)(1− P (n, l)) + (1)(P (n, l)) = P (n, l).

We then wish to calculate the expected value for a population of size p. Since
the probability that one pair are permutations of each other is independent of
the probability for any other distinct pair, we can achieve this by taking the
probability for a single pair and multiplying by the number of possible pairings of
individuals in the population. Thus for a population of size p we form the union of
all
(
p
2

)
events where each pair are permutations of each other, giving an expected

number of permutation pairs of
(
p
2

)
P (n, l). This is shown in Figure 4.2 where

the expected number of genotypic permutations is calculated for all population
sizes from 2 to 10,000 (dashed line) for the representation used in the empirical
investigation detailed in Section 5.2. As we can see in Figure 4.2, the predicted
number of permutations with this representation is very low even for very large
populations (e.g. 10,000 individuals).

4.2.1 Empirical Validation

We validate the equation empirically by predicting the number of permuted pairs
in an initial population of size 100 with a range of alphabet cardinalities and
string lengths. The predicted and actual values as averaged over 100 trials are
shown in Figure 4.3.

While the actual permutation counts do not match the predicted values we
expect that averaging over more than 100 trials will produce values closer to those
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(a) Predicted values.
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(b) Actual values averaged over 100 trials.

Figure 4.3: The expected number of genotypic permutations in the initial popula-
tion for a range of weight space granularities and network sizes, with population
size 100.

predicted.
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4.3 Phenotypic Permutations

We now calculate the probability of drawing two networks which are phenotypic
permutations of each other. This is the kind of permutation that we are interested
in as unlike the genotypic permutations, phenotypic permutations always result in
phenotypically-equivalent networks and therefore are instances of the Permutation
Problem.

Calculating the probability of phenotypic permutations can be achieved using
the same mechanism as for the genotypic permutations, simply by reinterpret-
ing the parameters of Equation 4.2. Now, instead of number of alleles we are
considering number of possible neurons, and instead of string length we have
number of hidden neurons. The difficulty here is that due to the large number of
possible neurons for even modest genotype spaces, calculating the probabilities
is computationally infeasible with the method presented. So, for the phenotypic
permutations example we initially consider a toy genotype space of only 5 values,
α = {−1.0,−0.5, 0, 0.5, 1.0} and two hidden neurons. With such a coarse-grained
genotype space we might expect that the probability of encountering individuals
which are phenotypic permutations of each other would be high. As we will show
however, even for this unrealistically coarse space the probability of drawing a
population containing an appreciable number of permuted individuals is low.

We now present the method for the calculation of the parameters to use in
Equation 4.2 to calculate the expected number of phenotypic permutations in
an initial population. Given an alphabet α we can count the number of unique
hidden neurons φ in a typical feed-forward single-layer fully-connected network
space as

φ = |α|Ni+No , (4.3)

where Ni and No are the number of inputs and outputs respectively. We
can arrange these neurons into φNh networks of Nh hidden neurons1. Given, for
example, a network of three inputs, one output and |α| = 5 we would then have
φ = |α|Ni+No = 54 = 625 possible neurons. We can now calculate the probability
that two randomly drawn networks are phenotypic permutations of each other
using Equation 4.2, giving P (625, 2) = 2.6 × 10−6. The expected number of
phenotypic permutations for a range of population sizes using this representation
is shown in Figure 4.2 (solid line).

4.3.1 Discussion

Figure 4.1 shows the expected number of genotypic permutations for a uniformly-
drawn pair of individuals, for a range of alphabet cardinalities and string lengths.
Here we can see that the expectation is high for binary alphabets but drops off

1However, due to the invariance of a network’s function under permutation of its hidden
neurons, there are only

(
( φNh)

)
unique networks.
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rapidly for larger alphabets, which tells us that genotypic permutations are only
common with binary alphabets. Even with unrealistically small alphabets, such
as {−1.0,−0.5, 0, 0.5, 1.0} which has cardinality 5, the expectation for genotypic
permutations is low for most string lengths. For more realistic alphabets this
expectation can be shown to decrease rapidly, suggesting that this kind of permuta-
tion is a relatively rare occurrence, at least in the initial population. Extending
this to population sizes greater than two, we can see in Figure 4.2 that even
for population sizes up to 10,000 the expected number of pairs of individuals
which are permutations of each other is very low. For realistic network spaces this
expectation will be considerably lower.

Compared to that of phenotypic permutations, the expected number of geno-
typic permutations in the initial population is higher, though it is debatable as to
whether this is of any real concern as genotypic permutations are not frequently
cited as being an obstacle in the application of Genetic Algorithms. Given that
genotypic permutations may occur in any representation this would potentially
have far-reaching implications, particularly for binary representations. The recom-
bination of two individuals which are permutations of each other will result in a
higher-than-average likelihood of repeated allele values in the offspring. While this
may result in an increase in the production of poor offspring due to repetition of
genes [Sta04], population-based search techniques such as Evolutionary Algorithms
are largely unaffected by such infrequent events in the general case.

Figure 4.2 shows the expected number of genotypic permutations, and so
an upper bound for the expected number of phenotypic permutations for the
representation used in the empirical investigation (Section 5.2), where a population
size of 100 was used. It can be seen here that the expected number of permutations
is low in both cases: Eperm(100) = 9.4× 10−4 genotypic permutations; this is in
accordance with the count of zero permutations in the actual evolutionary runs.

4.3.2 Calculating for high values of n

For high values of n (i.e. number of neurons in the phenotypic case or weights in
the genotypic case) the evaluation of Equation 4.2 quickly becomes infeasible. The
number of iterations which must be made is proportional to ((nl)). Figure 4.4 shows
the growth of this function as n and l increase; the number of multisets to consider
when n exceeds 15 quickly becomes prohibitive. Calculating the probability of the
Permutation Problem in terms of phenotypic permutations requires evaluating
Equation 4.2 with values of n far in excess of the feasible limit with this method.
As n now represents the number of possible neurons and l the number of hidden
neurons required, to be limited to 15 neurons would preclude the investigation of
network spaces corresponding to real problems.

In order to determine a more efficient method of calculation we re-examine the
strategy behind the multiset-based approach. The total number of iterations over
all summations in Equation 4.2 will always equal the number of possible multisets
((nl)); we wish to reduce this number to a feasible level. If we examine the sequence
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Figure 4.4: The number of ways of picking multisets for a representation space
defined by the alphabet α and string length l. Given the rapid growth of this
function computing the probability of the Permutation Problem for the case where
|α| and l are both greater than or equal to 20 becomes infeasible.

S produced by evaluating the part of Equation 4.2 which counts the number of
permutations a particular multiset has we will be able to discern a pattern which
will allow us to cut down the number of operations required. The sequence S(n, l)
is defined as

S(n, l) =
l∑

i1=0

l−i1∑
i2=0

. . .

l−(
∑n−2 i)∑
in−1=0

 l!(∏n−1
j=1 ij!

) (
l −∑n−1

k=1 ik
)
!

 , (4.4)

where n is the number of possible values we can choose from and l is the
number of positions to fill, as before. For n = 2 this simplifies to

S(2, l) =
l∑

i=0

l!

i!(l − i)! (4.5)

Some examples of this sequence where we have two possible neurons (n = 2)
and from zero to four spaces for hidden neurons (0 ≤ l ≤ 4) are as follows:

S(2, 0) = 1

S(2, 1) = 1, 1

S(2, 2) = 1, 2, 1

S(2, 3) = 1, 3, 3, 1

S(2, 4) = 1, 4, 6, 4, 1.

The sequence S(2, l) corresponds to the (l+ 1)th row of Pascal’s Triangle. We note
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that there exists a symmetry in the sequence such that only half of the values in
each row need to be calculated in order to infer the whole. We now examine the
sequence S(3, l) which is defined as

S(3, l) =
l∑
i=o

l−i∑
j=0

l!

l!i!(l − i− j)! . (4.6)

Now the sequence for three possible neurons (n = 3) and from zero to four spaces
for hidden neurons (0 ≤ l ≤ 4) is as follows:

S(3, 0) = 1

S(3, 1) = 1, 1, 1

S(3, 2) = 1, 2, 1, 2, 2, 1

S(3, 3) = 1, 3, 3, 1, 3, 6, 3, 3, 3, 1

S(3, 4) = 1, 4, 6, 4, 1, 4, 12, 12, 4, 6, 12, 6, 4, 4, 1.

Evaluating this sequence gives us the l+1th slice of the n-dimensional generalisation
of Pascal’s Triangle. For n = 3 it calculates the lth layer of Pascal’s Pyramid2,
the generalisation of Pascal’s Triangle in three dimensions. The first six layers of
Pascal’s Pyramid are visualised in Figure 4.5.

The length of the sequence |S(n, l)| is the number of multisets which can be
composed from n items being placed in l spaces, i.e.

|S(n, l)| =
((
n

l

))
=

(
n+ k − 1

k

)
. (4.7)

The interpretation of the sequence is that the values represent the number
of permutations that each multiset has (taking into account duplicate values).
Therefore, the sum of the values of the sequence will be the total number of strings
of length l that can be formed from n items, or∑

s∈S(n,l)

s = nl. (4.8)

We have already suggested that there is some regularity in Pascal’s Triangle
and Pyramid. The n-dimensional extension of Pascal’s Triangle is called Pascal’s
Simplex. Using the sequence S(n, l) we are able to construct any of those n-
dimensional simplices, and in doing so calculate the necessary values for our
calculation of the probability of the Permutation Problem occurring. The number
of points in these simplices is prohibitively large beyond the 15-dimensional case
however; calculating each individually will not be computationally feasible for
realistic spaces. In order to reduce the computation required we exploit a regularity
in the sequence based on the theory of integer partitions. Briefly, the partitions of

2This is a tetrahedral pyramid, as it is composed of layers of triangles.
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=

{1}
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{1,1,1}

S(3,2)
=

{1,2,1,2,2,1}
S(3,3)

=
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=
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partitions

Figure 4.6: The number of partitions of the integer l. Calculating the probability
of the Permutation Problem occurring using an approach based on partitions
rather than multisets is considerably more efficient as the number of partitions is
independent of |α|.

a positive integer l are all the ways of writing the number as a sum of positive
integers (including l itself). Thus the partitions of 4 are

4,

3 + 1,

2 + 2,

2 + 1 + 1,

1 + 1 + 1 + 1 .

As the number of partitions depends only on the number of hidden neurons or
spaces to fill l and not the number of neurons available n, a method based on
partitions can scale to any representation granularity (number of neurons) without
increasing the number of operations required significantly. The growth of the
number of partitions of the positive integers is shown in Figure 4.6.

The regularity which we will exploit is that only certain numbers will appear
in the sequence for a given layer or dimension of the simplex. Looking again at
Figure 4.5 we can determine visually what those numbers are and how many times
each value occurs. Taking a simpler case as an example, we calculate the sequence
S(2, 4):
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S(2, 4) =
4∑
i=0

4!

i!(4− i)!

=
4!

0!(4− 0)!
+

4!

1!(4− 1)!
+

4!

2!(4− 2)!
+

4!

3!(4− 3)!
+

4!

4!(4− 4)!

=
24

1(24)
+

24

1(6)
+

24

2(2)
+

24

6(1)
+

24

24(1)

=
24

24
+

24

6
+

24

4
+

24

6
+

24

24
= 1 + 4 + 6 + 4 + 1

= 2(1) + 2(4) + 1(6).

Here only the numbers {1, 4, 6} appear in the sequence. As we know that we
will have ((2

4)) = 5 terms we also know that there will necessarily be((
2

4

))
− |{1, 4, 6}| = 5− 3 = 2

repetitions of terms in the sequence. If we consider the sequence to be a multiset
we can say we are interested in determining first the unique members of the
multiset and then their respective multiplicities.

If we know the numbers that should appear in this sequence and their multi-
plicities then we have the information we require in order to reduce the number
of terms that we need to explicitly enumerate by grouping individual terms with
their respective frequency of occurrence as their coefficient. When we apply this
principle to the calculation of the probability of the Permutation Problem for
n = 2 and l = 4 we get
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P (2, 4) =
4∑
i=0

(
4!

i!(4−i)!

)
24

(
4!

i!(4−i)!

)
− 1

24

=

((
4!

0!4!

)
24

(
4!

0!4!

)
− 1

24

)
+

((
4!

1!3!

)
24

(
4!

1!3!

)
− 1

24

)
+((

4!
2!2!

)
24

(
4!

2!2!

)
− 1

24

)
+

((
4!

3!1!

)
24

(
4!

3!1!

)
− 1

24

)
+((

4!
4!0!

)
24

(
4!

4!0!

)
− 1

24

)

=

(
1

16

1− 1

16

)
+

(
4

16

4− 1

16

)
+

(
6

16

6− 1

16

)
+(

4

16

4− 1

16

)
+

(
1

16

1− 1

16

)
=

(
1

16

0

16

)
+

(
4

16

3

16

)
+

(
6

16

5

16

)
+(

4

16

3

16

)
+

(
1

16

0

16

)
= 0 +

12

256
+

30

256
+

12

256
+ 0

= 2(0) + 2

(
12

256

)
+

30

256
.

By determining the probabilities and their frequencies we reduce the number of
(probabilistically) identical cases considered. This saving is visualised in Figure 4.7
which shows the percentage of operations required to calculate the probability using
a partition-based approach compared to the multiset approach. For a given value
of n there will be one or more values of l where the number of partitions will be
greater than the number of multisets. For these cases the multiset approach would
be more efficient, though as n increases this value of l also increases considerably.
Given that we will be dealing with very large values for n the partition-based
approach will always be used.

In this particular case we wish to determine first the possible number of
permutations that any given string composed of 4 values out of an alphabet of
size 2 (in this case {1, 4, 6}) and their frequencies {2(1), 2(4), 1(6)}. Given these
pairings we then have enough information to calculate the probability of the
Permutation Problem occurring, while evaluating only a fraction of the number of
operations as compared to the initial approach.
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Figure 4.7: Percentage of operations required to calculate Permutation Problem
probability using partition-based method versus a multiset-based method. The
saving in operation count is considerable for all but the lowest settings of n, which
represent unrealistically-small problem spaces.

4.3.3 Partition-based Method

In this section we present the method for calculating the probability of the
Permutation Problem occurring using the more efficient partition-based method.

We first need to calculate which numbers will appear in our sequence of
multisets ({1, 4, 6} in our previous example). In this example we have Nh = 4
hidden neurons. We begin by calculating the set of partitions D4 of the integer 4:

D4 = {{1, 1, 1, 1}, {2, 1, 1}, {2, 2}, {3, 1}, {4}} .

These are the cardinality patterns of sets that we can form with up to 4 values.
For example from right to left we have ‘four of a kind’, ‘three of a kind plus
any other’, ‘two pair’ and so on, to borrow from card-playing terminology. No
matter how many values we have to draw from, any string drawn will follow one
of these patterns (for a draw of four cards). These sets effectively specify different
cardinality patterns for multisets. From these patterns we can calculate how
many permutations each has; we then know the size of the group of permutations
that each multiset type corresponds to. We denote Al to be the ordered set of
permutations that can be formed if we interpret each element of the multiset (for
Nh = l) as being a distinct value in the string, where its value gives the number
of times the values appears in the string. In our example,
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A4 =

{
4!

1!1!1!1!
,

4!

2!1!1!
,

4!

2!2!
,

4!

3!1!
,
4!

4!
,

}
=

{
24

1
,
24

2
,
24

4
,
24

6
,
24

24
,

}
= {24, 12, 6, 4, 1} .

This can be expressed generally as

Al =

{
a : a =

l!∏
d∈Dl d!

}
. (4.9)

Given any number of hidden neurons we can calculate the possible number of
permutations each possible string may have. In our example, any given string may
have one of {24, 12, 6, 4, 1} permutations. We now wish to calculate how many of
each we have, for a given value of n. In our previous example n = 4 and we know
that we have zero with 24 permutations, zero with 12, one with 6, two with 4 and
two with 1.

We begin with the case of 24 permutations. For the number of strings with 24
permutations the corresponding member of D4 is {4} so we are looking to select
four distinct values to occupy one space of the string each. The number of strings
in our space with 24 permutations must therefore be

(
2
4

)
= 0 as we only have

two possible values; this is fewer than the number of spaces, meaning we have no
strings with the maximum number of permutations. The same is true for strings
with 12 permutations, (n < l) so again we have zero permutations as

(
3
4

)
= 0.

For the number of strings with 6 permutations the corresponding member of
D4 is {2, 2} so we are looking to select two values to occupy two spaces of our
string each. We therefore have

(
2
2

)
= 1 permutations.

For the number of strings with 4 permutations the corresponding member of
D4 is {3, 1} so we need two values: one will occupy only one position, the other
the remaining 3 positions. We therefore have

(
2
1

)
·
(

1
1

)
= 2 permutations. We select

from only one value in the second term as we have already selected one in the
first term.

The process for the number of strings with 1 permutation follows in the same
pattern. This pattern is shown more clearly in Table 4.1, and Table 4.2 which
shows the same calculation for the case where we have 3 values (or 3 neurons)
with which to fill the available 4 positions.

The algorithm for calculating the probability in this manner is given in Al-
gorithm 3. Put more informally, we iterate through all partitions of the integer l
(the number of spaces, or hidden neurons). For each partition we count how many
times a ‘1’ occurs, how many times ‘2’ occurs and so on, to produce a table as in
Table 4.2. We then count the number of ways we can produce strings that match
the pattern; this is the number of strings in the space that produce a particular



80 CHAPTER 4. ON THE PROBABILITY OF ITS OCCURRENCE

1 2 3 4

1111 4 0 0 0
(

2
4

)
= 0

112 2 1 0 0
(

2
2

)
·
(

0
1

)
= 0

22 0 2 0 0
(

2
0

)
·
(

2
2

)
= 1

13 1 0 1 0
(

2
1

)
·
(

1
0

)
·
(

1
1

)
= 2

4 0 0 0 1
(

2
0

)
·
(

2
0

)
·
(

2
0

)
·
(

2
1

)
= 2

Table 4.1: The table for calculating a simple example of the partition-based
approach with n = 2 and l = 4.

1 2 3 4

1111 4 0 0 0
(

3
4

)
= 0

112 2 1 0 0
(

3
2

)
·
(

1
1

)
= 3

22 0 2 0 0
(

3
0

)
·
(

3
2

)
= 3

13 1 0 1 0
(

3
1

)
·
(

2
0

)
·
(

2
1

)
= 6

4 0 0 0 1
(

3
0

)
·
(

3
0

)
·
(

3
0

)
·
(

3
1

)
= 3

Table 4.2: The table for calculating a simple example of the partition-based
approach with n = 3 and l = 4.

number of permutations. We therefore have both the number of permutations and
their frequencies which together provide all the information necessary to calculate
the full probability.

4.3.4 Empirical Validation

Using the faster calculation method we are now able to validate empirically the
case for phenotypic permutations. With the initial method, the computational
complexity of which depended both on n and l, we were unable to calculate these
probabilities.

In order to empirically validate the theoretical results we generate 100 uniformly-
initialised populations of individuals using a range of network representations and
compare the actual number of permutations with the expected numbers.

The simplest fully-connected feed-forward network we can construct which
can exhibit the permutation problem has one input, two hidden neurons and one
output. Such a network requires a minimum 1 · 2 + 2 · 1 = 4 weights. We begin
calculations with this network. We can also vary the number of bits per weight
to investigate the effect of weight granularity on the appearance of permutations.
Figure 4.8 shows the number of permuted pairs for a range of representations in a
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Algorithm 3 Calculate the probability of drawing two strings from the same
permutation group for a representation with n items and l spaces, using the
partition method.
procedure partition_probability(n, l)

total← 0
for partition ∈ partitions(l) do

counts← [ partition.count(x) for x ∈ [ 1, (l + 1) ] ] . How many ’1’s,
how many ’2’s...

spaces_taken← 0 . How many spaces in the string have been filled so
far

coeff ← 1
for c ∈ counts do

coeff ← coeff ·
(
n−spaces_taken

c

)
spaces_taken← spaces_taken+ c

end for
n_perms← l!∏

p∈partition p!

total← total + coeffn_perms2−n_perms

end for
return total

n2l

end procedure

population of size 100. The calculated values are compared to the actual values
as averaged over 100 trials and are found to match closely. Figure 4.9 then shows
the proportion of permutations we can expect in any initial population with a
representation parameterised by a particular choice of weight granularity (bits
per weight) and the number of weights in the network.

4.4 On the Redundancy of the Representation

In this section we explore how the Permutation Problem causes the search space
to contain massive redundancy3. We then explore how role redundancy might
affect the probability of the Permutation Problem occurring.

We can count the number of unique networks in the search space by first
enumerating all possible neurons, and then counting the number of multisets that
can be formed from these neurons. By counting the number of multisets we avoid
counting the numerous permutations and count only once for each unique selection
of neurons (with repetition).

The number of possible hidden neurons φ can be calculated as φ = |α|Nc
where |α| is the number of possible allele values (weights) and Nc = Ni +No is

3This redundancy is caused by individual solutions being repeated in the search space. By
this definition, a representation free of redundancy would contain only one point for each unique
solution.
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(b) Actual values averaged over 100 trials.

Figure 4.8: The average number of phenotypic permutations counted in the initial
population of an evolutionary run, for various representations (defined by the
number of possible weight values and the number of weights in the network).

the number of connections to/from each hidden neuron where Ni and No are the
number of inputs and outputs respectively. For even a coarse network space with
α = {−1.0,−0.9,−0.8, ..., 0.8, 0.9, 1.0} (|α| = 21), Ni = 4 and No = 2 we have
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Figure 4.9: Expected proportion of permutations in the initial population.

φ = 216 = 8.6× 107 unique neurons.
The number of unique networks Ψ is then calculated as Ψ =

(
( φ
Nh

)
)
where Nh is

the number of hidden neurons and ((nk))=(n+k−1
k ). Given φ = 8.6× 107 and Nh = 12

we can form ((
8.6× 107

12

))
= 3.3× 1086

unique networks.
The total number of networks (including permutations) Ω is however Ω = φNh ;

a considerably larger number. Using the previous example we would then have a
total of (8.6× 107)

12
= 1.6× 1095 networks. The percentage of unique networks

in the complete search space is therefore only 100 · Ψ
Ω

= 2.1× 10−7 = 0.00000021%.
This redundancy is explored further and a solution presented in Chapter 6.

This level of redundancy is essentially a lower bound for the redundancy
in a Neural Network search space. If each neuron (arrangement of weights)
encodes a unique function then the total redundancy is simply that caused by the
Permutation Problem. For a given neuron representation however this is unlikely
to be the case. An intuitive example would be the set of neuron weights which,
given any problem input, cause the neuron to saturate, outputting either 0 or
1 (for a sigmoidal neuron). Such neurons are indistinguishable by the fitness
function and so cause further redundancy.

We can estimate how this redundancy would affect the probability of the
Permutation Problem by calculating the probability for a given representation
at different levels of assumed redundancy. The change in probability is shown in
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(a) (bits per weight) bpw = 2

(b) (bits per weight) bpw = 8

Figure 4.10: The percentage of the population that will be part of one or more
pairs of permuted networks as the level of redundancy is increased for the UCI
Iris dataset. Rather than thinking of redundancy increasing we can think of the
percentage of neurons which are considered unique decreasing.

Figure 4.10 for the UCI Iris problem (a small network) and for the UCI Cancer
problem (a much larger network) in Figure 4.11. In the case of the Iris problem,
the probability is very low for a representation with 2 bits per weight and becomes
extremely low when this is increased to 8 bits. For the UCI Cancer problem the
probability is already extremely low for even a representation of just 2 bits per
weight. In either case, the only significant increase in probability comes very
close to 100% redundancy. Based on these findings we do not expect this kind of
redundancy to affect the probability sufficiently to alter our conclusions regarding
the severity of the problem.

A limitation of this analysis however is that it assumes that each group of
redundant neurons is the same size. If we were to have a few groups of redundant
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Figure 4.11: The percentage of the population that will be part of one or more
pairs of permuted networks as the level of redundancy is increased for the UCI
Wisconsin breast cancer dataset. Rather than thinking of redundancy increasing
we can think of the percentage of neurons which are considered unique decreasing.

neurons which were especially large (relative to other groups) then this could
increase the probability of the Permutation Problem occurring. This issue is not
explored in detail in this work but is an interesting avenue for future work.

4.5 Proportion of Networks with Nh! Permutations

A possible explanation for any overestimation of the severity of the Permutation
Problem in the literature may have stemmed from an implicit assumption that
given a network search space composed of networks with Nh hidden neurons, any
given network will have Nh! permutations. While this is true for some or even most
networks in a representation space, it depends wholly on the parameterisation of
the space. The figure of Nh! assumes that all of the neurons are unique (in terms
of their weights for example) but this will not be the case for all networks in a
search space; some possible strings will contain repeated neurons. The question
of what proportion of networks have the maximal number of permutations (Nh!)
has not previously been answered in the literature so we investigate it here for a
range of representations and two classification problems.

Starting with the UCI Iris problem which has four inputs and 3 outputs, we
can see in Table 4.5 that generally as the number of hidden neurons increases,
the proportion of networks with the maximal number of permutations decreases
rapidly. However, this is only the case for granular representations with assigned
bits per weight less than 16. Once we reach 16 bits per weight and above the
difference starts to be negligible.

For the UCI Cancer problem which has 30 inputs and two outputs, the effect
is similar but due to the network being larger the effect of increasing the number
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Figure 4.12: Proportions of permutations for a regression problem.

Nh bpw=2 bpw=4 bpw=8 bpw=16

5 68.5% 91.4% 99.4% ∼100%
10 16.1% 66.1% 97.52% ∼100%
15 1% 37.5% 94.3% ∼100%
20 0.01% 16.5% 89.91% ∼100%
25 ∼0% 5.5% 84.52% 99.9%

Table 4.3: Proportions of networks with Nh! permutations - UCI Iris: Ni = 4, No =
3

of hidden neurons is reduced; now as long as the bits per weight is set to at least
8, the assumption that most networks have Nh! permutations holds.

If we have a fairly large network (such as that required for most classification
problems) and a relatively fine weight granularity (such as 8 bits per weight or
higher) then the assumption that most (but not all) networks have the maximal
number of Nh! permutations is a fair one. If we are optimising networks for a
regression problem however it is possible that this assumption does not hold.
Looking at Figure 4.5 we can see that only ∼ 43% of networks have the maximal
number of permutations.

Why is this important? The calculations for the probability of the Permutation
Problem occurring already take into account exactly the proportion of networks
with each possible number of permutations, so the calculation of the probability
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Nh bpw=2 bpw=4 bpw=8 bpw=16

5 92.4% 98.1% 99.9% ∼100%
10 69.7% 91.54% 99.5% ∼100%
15 42.6% 81.3% 98.7% ∼100%
20 20.9% 68.7% 97.7% ∼100%
25 8.1% 55.1% 96.4% 99.9%

Table 4.4: Proportions of networks with Nh! permutations - UCI Cancer: Ni =
30, No = 2

is unaffected. The aim of this section has been to demonstrate that it is not
necessarily fair to assume that all or even most networks have the maximal number
of permutations. Given that the probability of the exact-weight Permutation
Problem occurring is still low for all but the most granular representations this is
not a serious concern.

4.6 Chapter Summary
In this chapter we have presented an equation (Equation 4.2) for calculating
the probability of picking two members from the same multiset; effectively the
probability of the Permutation Problem occurring when uniformly initialising
a population. As a naïve implementation of Equation 4.2 is too inefficient for
practical use, a novel method of calculation based on the theory of integer par-
titions was presented which allows this probability to be calculated for realistic
representation spaces. This is achieved by making the computational complexity
depend only on the number of hidden neurons in the network rather than the
number of neurons available in the representation space. The results from these
calculations were then validated empirically.

We examined the redundancy of the search space as introduced by the per-
mutation symmetry and presented a hypothesis for how neuron role redundancy
could affect the conclusions of this chapter. Finally we investigated the nature
of the search space, particularly what proportion of networks have the maximal
number of permutations and how this affects the likelihood of the Permutation
Problem occurring.

The results of this work tell us only about the occurrence of the Permutation
Problem in the initial population. In later generations when the average fitness is
higher we may see higher or lower rates of occurrence of permutations. The motiv-
ation of this chapter has therefore been to explore occurrence of the Permutation
Problem due to presence of permutations in the initial population.



Chapter 5

Empirical Analysis

5.1 Introduction

In the previous chapter we explored the rate of occurrence of the Permutation
Problem in the initial population from a probabilistic perspective. A limitation
of this work is that while it characterises accurately the rate of occurrence when
initialising the initial population, it does not explore what happens during later
generations. In this chapter we therefore investigate the Permutation Problem
from an empirical perspective to investigate how this rate of occurrence changes
in later generations. We begin by counting explicitly the number of permutations
that appear during runs of a typical Genetic Algorithm (GA). As the Permutation
Problem and recombination are closely linked, we also investigate the efficacy of
crossover in Neuroevolution; we use Price’s Equation to analyse the contribution of
crossover to the evolutionary process in order to shed light on the role of crossover
in Neuroevolutionary algorithms. Following the analysis based on Price’s Equation
we then investigate whether crossover is acting as a macromutation rather than as
a recombination operator as might be expected. Finally we repeat the counting
experiment for three classification problems using a binary representation of
varying granularity to determine the probability in low-granularity search spaces.

5.2 Counting Permutations in a Genetic Algorithm

In this section we investigate the impact of the Permutation Problem on a typical
GA evolving Neural Networks for a difficult control problem, using Price’s Equation
to analyse the contribution of crossover and its relationship to the Permutation
Problem.

5.2.1 Introduction

By explicitly counting the occurrence of permutations in two typical GA config-
urations we can produce an empirical estimate for the number of permutations

88
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expected in a given run for this problem/algorithm configuration.
It is possible that the lack of even estimates for the rate of occurrence of

permutations in the literature has lead to overestimation of the severity of the
problem, leading in some cases to crossover having been avoided or customised
where it might have been a useful search operator in its canonical form [MD89,
BMS90, Bra95, CF96, Thi96, SM04, GPOBHM05]. In addition to the counting
of permutations we use Price’s equation to examine the interrelationships of
the genetic operators to build a more complete picture of how each operator
contributes to the search for Neural Networks of increasing fitness. This is
necessary as simply comparing performance with and without crossover runs the
risk of simply comparing two different selection/variation pressures rather than
isolating the effects of crossover1.

The aim of this investigation is to check empirically the number of permutations
which occur in runs of a typical Evolutionary Algorithm, and in doing so more
fully understand the individual role each operator plays and their interactions
in the evolution of Neural Networks so that informed choices can be made when
designing future Neuroevolutionary algorithms.

5.2.2 Price’s Equation

We now present Price’s equation which is used to provide insight into the contri-
bution and interactions of the genetic operators used in this work.

In 1970 George Price presented an equation which models the covariance
relationship between the frequency of a given gene in an offspring and the number
of offspring produced by its parent [Pri70]. A high covariance value for a particular
gene indicates that it would be a good predictor of selection.

Price’s equation requires some measurable attribute by which to compare
parents and their offspring. While originally this measure was gene frequency it
was later shown that other measures such as mean fitness could be used instead,
broadening the applicability of the equation in the Evolutionary Computation
domain [Alt95].

Given a parent population P1 and offspring population P2 we calculate the
average of the measured attribute over each population, producing Q1 and Q2

respectively. Price’s equation then states that

∆Q =
Cov(z, q)

z̄
+

∑
zi∆qi
Nz̄

, (5.1)

where,

• ∆Q = Q2 −Q1

• N is the number of individuals in P1

1Removing crossover (a variational operator) will often strengthen the selection pressure (as
there is now less variation per generation). For a fair comparison this decrease in variation must
be controlled for.
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• zi is the number of offspring to which parent i contributed genetic material

• z̄ =
∑
i zi
N

• qi is the measurement of the chosen attribute of parent i

• q′i is the average of the attribute as measured in the offspring of parent i

• ∆qi = q′i − qi

Price’s equation estimates the change in a measurable attribute from the
parent to offspring population. In this work as in [PBJ03] the attribute we are
interested in is the average change in fitness between generations:

∆Q = f(t+ 1)− f(t), (5.2)

where f(t) is the average fitness of the population at generation t.
In terms of the average change in fitness between generations, Price’s equation

allows us to separate the contribution from selection (first term) and the variation
operators (second term). In the design of Evolutionary Algorithms this level of
introspection allows the designer to clearly see the trade-off between selection and
variation strength and find a balance between the two.

Potter et al. have further extended the utility of Price’s equation by demonstrat-
ing that the second term of the equation is equivalent to the sum of contributions
from each individual operator [PBJ03]:

∆Q =
Cov(z, q)

z̄
+

k∑
j=1

∑
zi∆qij
Nz̄

, (5.3)

where,

• k is the number of genetic operators

• q′ij is the average value of the measured attribute of the offspring of parent
i, after the application of operator j

• ∆qij = q′ij − q′i(j−1).

• q′i0 = qi

• and q′ik = q′i.

This extension of the equation allows the relative contribution of each operator
to be compared in a more rigourous fashion than when simply removing each
operator one at a time; an approach which fails to capture the interaction of the
operators.

At this stage we can use the extended equation to, over a single run, determine
the average change in fitness caused by each operator at each generation. We can
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then repeat this and average the results over several runs. Where this measure falls
short is made clear in cases such as that of Figure 5.10 where two operators (in
this case crossover and mutation) have a (nearly) identical mean contribution. In
order to gain greater insight into the relative merits of each operator we examine
the variance of the effect of each operator at each generation, rather than simply
the mean [BPJ04]. It should be noted that this is not the variance of the mean
effect of an operator averaged over a number of runs, but instead represents the
‘reach’ of the operator at a particular generation, i.e. the range of fitness values
over which it has been capable of producing offspring at.

The variable of interest here is then V ar(X) where:

• X = qijk − qi(j−1)k

• and qijk is the measured attribute of the kth child of parent i after the
application of operator j.

In the presented graphs, the variance of each operator is shaded in grey, one
standard deviation above and below the mean effect of the operator.

As in [PBJ03], before using the model to analyse operator effects we first check
the ability of the extended equation to predict the change in mean fitness on the
problem at hand. Figure 5.1 shows the predicted and actual changes in mean
fitness over the course of a single evolutionary run of the algorithm. Here we
can see the predictions made by Price’s equation follow almost exactly the actual
average change in fitness between generations, giving us confidence in its ability to
accurately characterise the contribution of each operator. The accuracy could be
further improved by increasing the population size in order to reduce the sampling
error.

5.2.3 Experimental Setup

In this section we present the details of the GA used, the Cart-Pole problem and
the method for counting permutations.

Overview

In this work we look at two configurations of a typical GA: one which employs

• fitness-proportional selection,

• 1-point crossover (probability of application 0.6),

• and Gaussian mutation (probability of application 0.6, variance 0.3).

The other adds to this the application of the inversion operator (probability
of application 0.6). The two experiments are referred to as Crossover-Mutation
(CM) and Crossover-Inversion-Mutation (CIM) throughout this work. All results
given have been averaged over 200 runs except for the permutation counting
experiments which were averaged over 20 runs.
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Figure 5.1: The actual average change in fitness each generation in a single
run compared with the value as predicted by Price’s equation. The graph has
been focussed on the area of highest variability; for generations 1 to 60 both the
predicted and actual values are around zero.

The Cart-Pole Problem

The Cart-Pole problem requires a controller to balance one or more hinged poles
attached to a cart on a finite length of track by applying force in either direction.
The controller is considered to have failed if the cart strays outside the boundaries
of the track, or the poles exceed a specified angle from vertical.

In this work we employ a variation with two poles of differing lengths, 1.0
and 0.1 metres respectively. The controller must keep the poles within the failure
angle of 36◦ for 1,000 time steps, using continuous control. The longer pole always
starts 4◦ off-centre, the shorter pole vertical.

At each time step, the networks receive a fixed bias value b of 0.5, the position
of the cart x and pole angles θ1 and θ2. In the first variant of the problem, the
velocity information for the cart ẋ and pole angular velocities

(
θ̇1, θ̇2

)
are also

passed to the network. For the more difficult second variant however, the network
is extended with recurrent connections, which it must use to infer the velocities,
providing a significant leap in task difficulty.

The fitness function used here measures the number of time steps that the
controller is able to keep the cart and poles within the defined limits. The inputs
from the environment consist of the cart position x measured as its deviation from
its starting point in the center of the track and the angle from vertical of the two
poles, θ1 and θ2.

The latter variant of the pole balancing problem is particularly difficult as
two poles must be balanced simultaneously, without the provision of cart/pole
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Figure 5.2: Network used for the Dual Pole Balancing with velocities experiment.
The six environment inputs are fully connected to two sigmoid nodes, which are
in turn connected to an output sigmoid node.

Figure 5.3: Network used for the Dual Pole Balancing without velocities experi-
ment. Each hidden node now receives recurrent inputs from the output unit and
their own output from the previous time step.

velocity information. This problem was chosen as the benchmark due to its
difficulty. It poses a significant challenge to current Reinforcement Learning and
Neuroevolutionary methods in the literature [GSM08].

Following the naming conventions of [OYKM07], we refer to the version of
the pole balancing problem where velocity is given as the Dual Pole balancing
(DP) problem, and the variant used here with velocity information removed as the
Dual Pole balancing No Velocities (DPNV) problem. The network templates used
for the DP and DPNV experiments are shown in figures 5.2 and 5.3 respectively.
In this section we only make use of the DPNV setup. Both the DP and DPNV
variants will be used in the investigation of Section 5.3.



94 CHAPTER 5. EMPIRICAL ANALYSIS

Model

Each individual in the population is a Neural Network with two hidden neurons
(h1, h2) and one output neuron o. The three environment inputs (x, θ1, θ2) are
fully connected to the hidden neurons, which are in turn both connected to the
network output. The output neuron further receives as input the network output
from the previous time step. This recurrent connection allows the network to
determine the appropriate direction and magnitude of force to apply based not
only on the environment inputs but also on its previous actions2.

The genotype for an individual network is composed of 9 parameters forming
a single string of reals of the form, (hx1 , h

θ1
1 , h

θ2
1 , h

x
2 , h

θ1
2 , h

θ2
2 , o

h1, oh2, oo) where h, o
denote hidden and output neurons respectively, subscripts denote a neuron index
where applicable and the superscript denotes the neuron input3.

A limitation which should be clarified at this point is that in order to compare
the performance of this algorithm with contemporary research it would be necessary
to use a more complex fitness function such as that of Gruau [GWP96] which
penalises solutions which simply swing the poles back and forth without stabilising
the cart in the center of the track. As the purpose of this work is to examine the
significance of the Permutation Problem on the evolution of Neural Networks such
comparison is, at this stage, outside the scope of investigation.

Counting Permutations

In counting the permutations, each weight is rounded to 1 decimal place so that
(0.13, 0.25) and (0.33, 0.10) would be considered to be permutations of each other
(as each would resolve to (0.1, 0.3) and (0.3, 0.1) respectively)4.

It should be noted that the permutations counted here do not necessarily
correspond to the example given in Figure 3.1, i.e. Phenotypic Weight Permutations.
It is worth noting that in order to transform one genotype into the other (in this
example), more than one gene translocation is required, coupled with an inversion.
This is not possible given the configuration of operators in this work and would
represent a configuration deviating considerably from what is considered a ‘typical’
GA.

The kind of permutations we are looking for therefore are a superset of
the permutations which represent the Permutation Problem as described in the
literature. By counting all permutations we obtain an estimate on the upper
bound of instances of the Permutation Problem we might expect to see in an
evolutionary run.

2While it is possible to solve this problem without recurrent connections, the resulting
solution is likely to perform and generalise poorly.

3So for example hθ11 denotes the first hidden neuron receiving as input the angle of the long
pole and oo denotes the recurrent connection of the output neuron.

4There are many possible ways in which the search space can be discretised; this method has
been chosen as with such a granular search space we might reasonably expect some permutations
to appear.
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Figure 5.4: Best fitness curves for two configurations (averaged over 200 trials),
one which searches using crossover and mutation (CM), the other with crossover,
inversion and mutation (CIM).

5.2.4 Discussion

Looking at the best fitness curves in Figure 5.4 we can see that both the CM and
CIM configurations are able to make good progress on the problem, with CM
progressing more quickly than CIM.

Considering CM first we might assume that, due to the Permutation Problem,
crossover is hindering the search process. In order to determine whether this is
true or not we could run a test where we examine the performance of selection
and mutation alone. This has the possibility of misleading however as the absence
of crossover may lead to there being a better/worse match between the chosen
selection pressure (which remains the same) and the reduced variation caused by
employing only the mutation operator.

A more informative approach would be to use the extension of Price’s equation
(Equation 5.3) to examine the relative contribution of crossover and mutation.
Figure 5.5 shows the average change in fitness at each generation for the operators
used in this configuration. Here we can see that both crossover and mutation on
average produce offspring with lower fitness than their parents, with crossover
appearing to produce better individuals overall. However, in an evolutionary
search the aim is not necessarily to employ only the operators which on average
produce more fit individuals; large mutations can for example occasionally provide
similarly large leaps in fitness even if on average the mutations are deleterious.

Looking at the variance (shaded in grey) then of the crossover (Figure 5.6)
and mutation (Figure 5.7) operators in the CM experiment we can confirm
that crossover does appear to be contributing more overall to the fitness of the
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Figure 5.5: Average contribution of each operator at each generation (then averaged
over 200 trials) for the Crossover-Mutation (CM) experiment.

population, compared to mutation5.
Price’s equation quantifies the contribution of a particular operator, but can’t

tell us how the operator achieves this. Based on this analysis so far it appears
that crossover is indeed a useful operator for this problem and representation
combination. Could we improve the performance of crossover further by eliminating
the possibility of permutations occurring? By comparing pair-wise all members of
each generation we could determine that zero permutations were detected in any
of the 20 runs.

Why are there no permutations? The example in Figure 3.1 on page 46
suggests an intuitive argument for why there will be few if any permutations in a
run of a typical GA on this problem: in order to transform (a) into (b) we must
perform multiple gene translocations and an inversion. With only crossover and
mutation it would be necessary for mutation to mutate an individual such that
the result was a permutation of another individual in the population. We have
demonstrated that in this case such permutations are not being created.

This raises a question which has so far been largely overlooked in the literature:
when and under what conditions does the Permutation Problem occur? We have
seen from the example in Figure 3.1 that inversion is capable of permuting genes
(with the possible effect of creating genotypic permutations). In order for this to
happen there must be:

• two or more copies of a selected parent in the population available for
selection and,

5As the area of the shaded region above zero on the y-axis is greater for crossover than for
mutation we conclude that it is on average contributing more to the fitness of the population.
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Figure 5.6: Variance of the crossover operator in the CM experiment, averaged
over 200 trials.

• one or more of the copies should be (partially or fully) inverted.

The inverted strings are then permutations of each other and the original parent.
The recombination of these individuals should on average produce offspring of very
low fitness as has been seen in the example of the Incompatible Representations
Problem in Figure 3.66.

Could this hypothesis—that inversion is introducing permutations—account
for the difference in performance between the CM and CIM configurations?

Looking at the relative contributions of each operator in the CIM configuration
(which consists of crossover, inversion and mutation) in Figure 5.10, we can see
that selection is accounting for more of the fitness gain on average than it is in the
CM configuration. This is then matched by the strongly deleterious (on average)
effect of inversion. In terms of their mean effect crossover and mutation are now
indistinguishable. Of interest here is the shape of the mean effect curve of selection:
while under the CM configuration progress appears to be stalling close to the
150th generation, with the addition of inversion the progress is, in comparison,
showing a markedly decreased slowdown. A possible reason for this can be found
in the diversity profile of each configuration (Figure 5.8): inversion, in conjunction
with the other operators, is multiplying the diversity in the population, biasing
the algorithm towards exploration rather than exploitation7. While this may not

6If the offspring post-inversion are of low fitness however then they are unlikely to be selected
for mating; while this would decrease the efficiency of the search process it would not lead
to occurrences of the Permutation Problem as a necessary requirement is that the permuted
individuals both be selected for recombination.

7Inversion and crossover have the property of producing diversity from the diversity already
present in the population. Repeated applications of both operators therefore results in a
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Figure 5.7: Variance of the mutation operator in the CM experiment, averaged
over 200 trials.

be a sustainable search strategy (for that, a balance between exploration and
exploitation would be necessary), for the given fitness target and generation limit,
the introduction of inversion has not had a severely negative impact.

Upon examining the variance of crossover in this configuration (Figure 5.9)
and mutation (Figure 5.11) we can see that crossover is still the more productive
operator on average. The variance for the inversion operator (Figure 5.12) suggests
that it very rarely contributes positively to the fitness of the individuals it is
applied to. This finding is in line with expectations based on the literature
[Whi95, Yao99, YL97], but is its predominantly negative effect due to its creation
of permutations? The same permutation counting experiment is run again with
inversion included, but again zero permutations are counted. This suggests that
while inversion appears to be a poor operator for this problem and/or chosen
representation, its lack of utility is not due to the manifestation of the Permutation
Problem. Rather, the inverted solutions are rarely selected due to their low fitness
and so discarded early or, when selected and recombined with good solutions, are
producing offspring of very low fitness as in the example in Figure 3.6 which would
be more a problem of incompatible representations rather than of permutations.

5.2.5 Summary

We have used Price’s equation and explicit enumeration of permutations in order
to investigate empirically the significance of the Permutation Problem in the
evolution of a Neural Network for a difficult control problem. We discovered that
a typical GA is able to evolve suitable controllers for this non-Markovian variant

considerable shuffling of genes, leading to wider exploration of the search space.
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Figure 5.8: A comparison of the diversity of each population over the course
of evolution, averaged over 200 trials. Note that the introduction of inversion
disrupts the balance between the selection pressure and rate of variation in the
population.

of the Cart-Pole problem without the need for specialised operators or genetic
representation.

The results of this work suggest that for typical GAs the Permutation Problem
is perhaps not quite as serious as originally thought in early research into the
evolution of Neural Networks. This work has demonstrated that 1) the performance
of a typical GA on a difficult control problem is quite acceptable and 2) the
introduction of inversion (which should in theory seriously disrupt the search
process) has a relatively minor negative effect. In addition, it has been shown that
with a typical GA, crossover and mutation alone are insufficient for generating
permutations in the population, and that the addition of inversion likewise results
in no permutations, due largely perh aps to the later application of the mutation
operator.

Using Potter’s extension to Price’s equation we have analysed the relative
contribution to population fitness of each operator. This analysis, in conjunction
with the counting of permutations, has allowed us to determine the relative utility
of each operator for this problem. In doing so we were able to avoid wrongly
attributing the decrease in performance seen following the introduction of inversion
to the Permutation Problem by explicitly checking for and discovering the lack of
permutations in the population.

This relationship between a chosen representation and the genetic operators
could be investigated further by focusing on the level of disruption caused by
an operator on average, with the aim of selecting the most appropriate set of
operators. It is not clear exactly what level of disruption is optimal: too little and
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Figure 5.9: Variance of the crossover operator in the CIM experiment, averaged
over 200 trials.
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Figure 5.10: Average contribution of each operator for the Crossover-Inversion-
Mutation (CIM) experiment, averaged over 200 trials.
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Figure 5.11: Variance of the mutation operator in the CIM experiment, averaged
over 200 trials.

we make little progress; too much and the search becomes too noisy. Ideally we
should match the selection pressure with an appropriate level of disruption that
allows for continued, controlled (rather than random) exploration of the search
space.

5.2.6 Future Work

The problem of incompatible network representations suggests that the recombin-
ation of significantly dissimilar networks should be avoided; this view is shared
more generally with respect to most evolutionary algorithms. This then suggests
that speciation may be an important consideration in the design of evolutionary
algorithms for Neural Network design and optimisation. The role of speciation in
the evolution of Neural Networks will therefore be an area of interest for future
investigations.

Additionally, the ‘Price plots’, (e.g. Figure 5.12, where operator effect variance
is shaded in gray) give greater insight into the effects of the variational operators,
beyond simply examining their average effect on individuals. This is useful in
identifying operators which, while apparently poor in the average case, produce
occasional but significant jumps in fitness. The current method does not however
take the skew of the operator effects into account. While shading one standard
deviation to either side of the average gives us some idea of the effect of an
operator, it assumes perhaps too strongly the normality of the operator effects.
The operator may in fact be significantly better or worse than the picture given
by this method. For future work we would recommend examining not only the
variance of operator effects but also their skew. In the cases where the operator
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Figure 5.12: Variance of the inversion operator in the CIM experiment, averaged
over 200 trials.

effects are significantly non-normal the Price plots would then lose their symmetry
and more accurately reflect the contribution of each operator the evolutionary
process.

5.3 Is Crossover Acting as a Macromutation?

Having investigated the role and contribution of crossover in a Neuroevolutionary
algorithm using Price’s Equation, we are now left with the question of how
crossover contributes to the search process, particularly whether recombination is
combining high fitness building blocks or whether it is instead acting as a large
(macro) mutation. In this section we explore whether the function of crossover is
simply as a large mutation or whether it has some other beneficial properties.

5.3.1 Introduction

The problem of how to effectively combine Neural Networks is still an open issue
in the field of Neuroevolution. While results in this work and others suggest that
simple 1-point crossover can be a useful operator when optimising Neural Networks
[Han93, GM03a], it is not clear why this is so. In this section we investigate whether
crossover is simply performing a large mutation (a macromutation) on networks
or whether there is some possibility that some kind of useful recombination is
occurring.

We present an analysis of the effect of crossover and a randomised crossover
operator on a simple co-evolutionary Neuroevolution algorithm, which is based
on an established algorithm in the literature (Enforced Sub-Populations). This
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algorithm is applied to two variants of the dual pole balancing task. The results
show that there is some benefit in recombining individuals with other individuals
from the same population, rather than randomly-generated individuals. This itself
does not show that there are building blocks in the genotype (though this may
be the case) but does show that it is not simply the mechanism of the crossing
of strings that causes the increase in fitness, i.e. that the choice of string will be
important.

While recent algorithms have employed crossover with encouraging results
[SM02, GSM06, MGW+06, GSM08], the recombination of networks has been
criticised in the literature due to the problem of parental incompatibility: two
networks which appear to be outwardly similar or identical (e.g. in terms of their
respective outputs or architecture) may internally have different structures and/or
parameters sets, causing them to be incompatible for crossover [ASP94, OYKM07,
YI08].

This incompatibility can be classified as being either parametric, architectural
or a combination of the two:

• Parametric incompatibility refers to the case where two networks of identical
architecture are crossed over genetically after a period of evolution in isolation.
Despite producing similar outputs given the same input, there is no guarantee
that the internal network weights are similarly close. In this case the crossover
mechanism is said to disrupt the internal or distributed representation of
the problem solution encoded in each network.

• Architectural incompatibility is commonly exemplified with reference to
the Permutation Problem: crossing over two genotypes which individually
produce functionally-equivalent networks (a different ordering of the same
neurons and connection weights) can result in a child network which possesses
less computational ability than either parent due to the duplication of
resources [ASP94]. Another form of architectural incompatibility could
involve networks of different toplogy; in this case it is not clear how the
networks should be recombined although a sensible method is presented in
[Sta04].

In this work we are mostly interested in the effect of crossover as part of
the Permutation Problem and so limit the investigation to that of architectural
incompatibility with fixed architectures.

The problem of incompatibility has led to Evolutionary Programming (EP)
being recommended as an alternative as it does not rely on information sharing
between members of the population and so does not carry the requirement of
compatibility [YL96, Yao99, YI08].

Our analysis of the effect of crossover and the random crossover of [Jon95]
is based on a simple but novel co-evolutionary NE algorithm, Co-evolution of
Sigmoidal Decision Surfaces (CSDS), which itself is based on an established
algorithm in the literature (Enforced Sub-Populations (ESP) [GM99]).
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The two pole balancing tasks are used as benchmarks for the CSDS algorithm
as together they provide control problems of significant and increasing difficulty.
The problems were chosen as they are of sufficient difficulty such that a process
of random weight guessing is insufficient for finding a solution in the allowed
experiment time [GSM08].

In this work we demonstrate that the evolutionary progress facilitated by the
crossover operator is not simply due to the mechanical recombination of strings
but that the choice of parents is important. While this may at first seem to
be an obvious result, there exist problems which contain no building blocks yet
benefit considerably from crossover, even when the second parent is randomly
generated and so should be of low fitness [Jon95]. The benefit comes from the
large mutations that crossover performs; as such while crossover is not functioning
in its intended capacity (i.e. recombining building blocks) its mechanism is still
beneficial to the evolutionary process.

5.3.2 The CSDS Algorithm

The presented algorithm, Co-evolution of Sigmoidal Decision Surfaces (CSDS),
is based on the Enforced Sub-Populations (ESP) algorithm [GM99]. ESP was
chosen as the base algorithm as it is crossover based and has been successfully
employed on difficult applications such as cache allocation on a multi-core CPU
[GBM01] and rocket guidance [GM03b].

Like ESP, the CSDS algorithm works by evolving populations of neurons which
compete to form part of the whole network as in the ESP algorithm. A population
(referred to as a sub-population in ESP) is maintained for each hidden neuron
in the network template. At the sub-population level the aim is to find the best
neuron for that particular position in the network. At the network level the aim
is then to cooperatively co-evolve a set of neurons which together solve the given
task.

5.3.3 Randomised Crossover

In [Jon95], Jones highlights the distinction between the idea and the mechanism
of crossover. The idea of crossover is what we expect it to contribute to an
evolutionary search, i.e. that it will recombine short, low order, high fitness
building blocks from the best individuals to form better solutions [Gol89]. In
problems where the assumptions of the idea do not hold, for example in cases
where there are verifiably no building blocks [BPJ05], then how can we explain its
contribution? Jones suggests that it may simply be the mechanism, the mechanical
process of recombining two strings that provides the benefit. In this case, selecting
an individual and crossing it with a randomly-generated individual can in some
cases be a useful operator [Jon95].
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5.3.4 Method

Algorithm 4 The CSDS algorithm, used to evaluate the different evolutionary
operators on the pole balancing tasks.
while task not complete do

if generations_since_last_improvement is 2 then
for all sp ∈ subpopulations do

sp.weights.perturb_cauchy(γ = 0.3)
sp.sigmoids.perturb_gauss(µ = 0.0, σ2 = 0.3)

end for
end if
perform_uniform_trials(n_trials = 100)
for all sp ∈ subpopulations do

new_population← 〈〉
sp.sort()
for all n ∈ sp.top_quartile() do

parent1 ← n
parent2 ← random(sp.top_quartile())
if b_random_crossover then

randomise_weights(parent2)
end if
child1, child2← crossover(parent1, parent2)
new_population.append(parent1, parent2,

child1, child2)
end for
sp.population← new_population

end for
end while

The problem of pole balancing requires a controller to apply force at regular
intervals to a cart on a track of finite length, to which a configurable number of
hinged poles are attached (the problem is defined in more detail in Section 5.2.3).

The CSDS algorithm was applied to both the DP and DPNV problems using
each of the following evolutionary operators:

• 1-point crossover; and

• Randomised crossover [Jon95].

In order to test for parameter sensitivity the experiments were repeated for:

• 2, 4 and 8 hidden units; and

• weight ranges of [-1,1], [-10,10] and [-100,100].

The full set of parameters is given in Table 5.1.
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Parameter Value

Sub-population size 100
No. of hidden nodes {2, 4, 8}
Weight range {[−1, 1], [−10, 10], [−100, 100]}
Max. generations 1000
Target fitness 1000
Initial sigmoid node slope ρ 1.0
Initial sigmoid node threshold θ 0.0
Pole failure angle 36◦

Table 5.1: Common parameters for the Dual Pole Balancing experiments

5.3.5 Results

Table 5.2 shows the worst, average and best cases for each operator solving the
simpler pole balancing task (DP) for 1,000 time steps, averaged over 50 runs. Table
5.3 shows the same comparison for the harder, non-Markovian pole balancing
task (DPNV). So as not to bias the averages the results are based only on the
successful runs and as such must be interpreted along with the related success
rate.

The results are not listed in full but are instead summarised here. Overall
the best performance for each operator was seen with the widest weight range of
[-100,100]. For both the DP and DPNV problems, crossover achieves a success
rate of 100% whereas random crossover (RC) achieves only 24% and 8% for DP
and DPNV respectively.

Figure 5.13 shows the average fitness at each generation, taken over 50 runs,
including both negative and positive results. It can be seen here that for the
simpler problem, crossover produces solutions with increased accuracy and in less
time than with the random crossover operator which fails to make significant
progress within the generation limit of the experiment. All results are statistically
significant with p < 0.05.

Figure 5.14 shows a measure of the average diversity of each subpopulation
over time, calculated by taking the average pairwise Euclidean distance between
subpopulation members, which has then been averaged over all trials. Pairwise
Euclidean distance d of N population members with genotype length L is defined
as:

d =

j=N−1∑
j=1

j′=N∑
j′=j+1


√√√√ i=L∑

i=1

|sij − sij′ |2


Here we can see that crossover causes the uniformly initialised subpopulations
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Operator low high avg. s.d. % success

Crossover 400 8797 3255 1738.75 100%
Random crossover 167 62493 27674 20238.58 24%

Table 5.2: Lowest, highest and average no. of network evaluations taken to solve
the Dual Pole With Velocities (DP) task over 50 trials.

Operator low high avg. s.d. % success

Crossover 1168 13913 4779 3051.64 100%
Random crossover 8630 62631 40788 24545.98 8%

Table 5.3: Lowest, highest and average no. of network evaluations taken to solve
the harder Dual Pole No Velocities (DPNV) task over 50 trials.

to converge rapidly, with mutation maintaining a minimum level of diversity.
The random crossover operator maintains a constantly high level of diversity
by effectively performing large mutations at each generation. A similar trend
appears in the [-10,10] weight range. In the more limited weight space of [-1,1]
both operators perform very poorly with the only solutions found by crossover for
the simpler DP problem.

5.3.6 Discussion

By comparing the results of applying 1-point crossover to that of the randomised
crossover, we can see that in the former case the parent choice (possibly indicating
useful sharing of information between individuals) improves the performance of
the algorithm, suggesting either

• the presence of building blocks in the genotype, or

• that crossover is macromutation of smaller magnitude than the randomised
crossover operator.

If we assume that crossover is acting as a mutation operator with its average
magnitude determined by the diversity of the sub-populations then the rapid
decrease in diversity (as shown in Figure 5.14) would mean that crossover is
behaving like a variable-magnitude mutation operator. The pattern is similar to
that of a rapid Simulated Annealing cooling schedule [Kir84].

While testing performance with Jones’ macromutational crossover suggests
that the benefits of the idea of crossover are in effect as well as simply the effects
of its mechanism, it does not prove that this is so. The truth of this statement
also depends heavily of course on what we consider the idea of crossover to be.
If we view it from the traditional interpretation of it being successful due to its
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Figure 5.13: Average fitness at each generation for each evolutionary operator on
the harder non-Markovian version of the pole balancing task (DPNV) where the
controller must keep the two poles balanced without the pole and cart velocity
information (synapse weight range [-100, 100]). Here the error bars represent a
confidence interval of 95%.

recombination of short, low order, high fitness building blocks then we may be
tempted to conclude that this is occurring. This is of course only one of the
possible explanations for any increase in fitness however. In this case the test only
allows us to say what crossover is not doing.

With this kind of feed-forward Neural Network we are already aware that the
genotype does not contain obvious building blocks [Yao99]. If we take this as
evidence for the idea of crossover not being in effect (building blocks are not being
recombined), we may then look at the effect of the mechanism of combining strings
alone. Perhaps unsurprisingly the performance is poor, leading us to conclude
that the mechanism alone is not particularly useful in this problem setting. This
leaves us with the conclusion that the benefit cannot be ascribed purely to the
mechanism, but that there must be at least one other factor at work.

We propose a view of crossover as a kind of mutation operator, where the
average magnitude of its application is determined by the diversity in the popu-
lation. If we have no diversity in the population, then applications of crossover
always result in the same string. In recombining strings from a population with
some diversity the resulting strings can be considered to be mutated with respect
to each other, with the restriction that the mutations can only be composed of
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Figure 5.14: Average diversity over all runs for each sub-population over time.
The crossover operator causes the sub-population diversity to decrease rapidly
in the early stages of evolution in contrast to the randomised crossover which
maintains a high level of diversity throughout. Here the error bars represent the
standard deviation.

alleles already present in the population.
Given a search space with no obvious building blocks we can therefore view

crossover as a form of mutation where its magnitude is determined by the popula-
tion diversity, and its functions as being one of spreading around the new alleles
brought in by mutation. Assuming diversity decreases over time as we converge
around a solution, the magnitude of the mutation offered by crossover decreases
similarly, offering an effect akin to simulated annealing. As such, crossover may
be helping the search process not by recombining high-fitness building blocks but
instead broadening the search early on (multiplying the diversity already present
in the population) and then later providing smaller and smaller perturbations as
the algorithm homes in on a solution. It is possible that this effect could help the
algorithm escape local minima early on in the search process.

5.3.7 Future Work

A key limitation of this work is that establishing that crossover is not performing
a macromutation tells us only that; it does not mean that crossover is therefore
performing some kind of recombination (though this may be the case), it may
simply mean that crossover is performing macromutations but on a smaller scale
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than those performed here. By recombining fit individuals with random individuals,
the average magnitude of mutation will be higher than if two similar networks
were recombined. As such we maintain our hypothesis that the utility of crossover
may be due to its behaviour as a mutation operator, the magnitude of which
is defined indirectly by the diversity of the population. If the diversity of the
population decreases steadily (a common pattern for an evolutionary algorithm)
then the effect will be similar to that of simulated annealing. For future work
we would suggest examining the performance of crossover versus a randomised
crossover where the average difference between members of the population and
the randomly-generated individuals is controlled for to investigate whether there
is a smooth relationship between the usefulness of the operator and the average
magnitude of the difference post-application.

An issue worth investigating is then perhaps whether crossover can be replaced
by a mutation operator which simply matches the average magnitude of the effect
of the crossover operator. As mutation operators can be tuned and do not depend
on the diversity of the population as such for their magnitude of effect, this could
result in more effective variational operators.

It may however be that the benefits of crossover come from its geometric
properties. In crossing over two genotypes a high-dimensional lattice of points of
points which can be reached is formed. If points in this lattice are on average of
higher fitness than the average of the rest of the search space then crossover will
produce more improvements than a more random operator such as the previously-
presented random crossover. It may therefore be worthwhile to investigate the
average fitness of points reachable by crossover compared to the average fitness of
points in the search space to investigate the efficacy of crossover as an evolutionary
operator.

5.4 Counting Binary Representation Permutations

In section 5.2 we counted the number of permutations which appeared in runs of
an Evolutionary Algorithm which used a discretised real-weighted representation.
This representation had been discretised by rounding the weights to one decimal
place, which facilitated the counting of permutations.

In this section we repeat this experiment with a binary representation where
we vary the number of bits per weight (and so the granularity of the space). Also
instead of the pole-balancing problem we now use three classification problems
from the UCI dataset repository.

5.4.1 Permutations with a Binary Encoding

Due to their simplicity, binary representations were often used in early work into
the evolution of Neural Networks [Yao99]. In this section we count the number of
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permuted individuals which appear in simulated evolutionary runs using binary-
encoded network genotypes. The encoding scheme that we use is a typical method,
outlined in [MF04] and is as follows:

Each weight in the network is encoded as a binary string 〈bk−1...b0〉 where k is
the number of bits in the string. We begin by converting this string from base 2
into base 10:

(〈bk−1...b0〉)2 =

(
k−1∑
i=0

bi · 2i
)

10

= x′

Then given x′ we find the corresponding value x within the required range
[l, u]:

x = l + x′ · u− l
2k − 1

For example, given the binary string 1101011001, x′ = 512 + 256 + 64 + 16 + 8 +
1 = 857. Then for a weight range of [-1, 1], x = −1 + 857 · 1−(−1)

210−1
= 0.67546432.

The weights for the network are arranged in the same order as with the floating
point representation (Section 5.2.3); the only difference is their method of encoding.
The recombination operator remains as the standard 1-point crossover operator,
though now operating on strings of bits rather than reals. The mutation operator
is a bit flip operator with a configurable probability that each bit may be flipped
at each application.

5.4.2 Method

We apply an Evolutionary Algorithm based on a typical GA to the problem of
weight optimisation for three classification problems. The parameters for the
experiment are given in Table 5.4. As we are interested in counting permutations,
the principal parameter of interest is the number of bits assigned to each weight.
The number of bits per weight in part defines the granularity of the search space,
and so greatly affects the probability of the Permutation Problem occurring. We
evolve networks using representations with as few as 1 bit per weight, up to 8 bits
per weight. The calculated probabilities of Chapter 4 predict that we will only
see a significant number of permutations for the case where the number of bits
per weight is 1, and only for smaller networks.

5.4.3 Results

Looking at Table 5.5 we can see that the only problem configuration with which
permutations were observed was with the UCI Iris problem with 1 bit per weight.
This is in line with the predictions made using the probabilities calculated in
Chapter 4. It becomes clear why this is so if we look at Figure 4.9 which shows
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Parameter Value

No. of runs 25
Proportion of data for validation 20%
Proportion of data for testing 20%

Problem { Cancer, Pima Diabetes }
Population Size 100

No. of Generations 200
Selection type Tournament(k = 2)

No. of hidden neurons (Nh) 5
Weight range (-1, 1)

Bits per weight (bpw) {1, 2, 4, 8}
Pcross 0.6
Pmutate

1
L

a

a L = the genotype string length, which is dependent on the
problem.

Table 5.4: Parameters for the binary permutation counting experiment Genetic
Algorithm.

that the proportion of permutations in the initial population is very close to zero
for all but the smallest networks and coarsest weight granularity.

The number of observed genotypic permutations is quite high for the cases
with 1 or 2 bits assigned per weight, though as expected the performance in each
case appears to be largely unaffected.

5.5 Discussion

Although this investigation is not immediately concerned with the performance
of the resulting networks, we would still like to see reasonable performance so
that we can confirm that the Evolutionary Algorithm is functioning as expected.
Table 5.6 shows that while the test performance of the networks is not particularly
competitive (this is perhaps to be expected given that the EA has not been tuned
for this purpose) the training performance is satisfactory, certainly showing that
the EA is behaving as expected and producing networks of greater fitness than
those of the initial population.

Given the empirical results, combined with those of the theoretical investiga-
tion, we can have some confidence that the counts of zero exact-weight phenotypic
permutations are representative of other Neuroevolutionary configurations. The
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Problem Phenotypic Avg. Std. Genotypic Avg. Std.

Iris(bpw=1) 0.04 0.20 1273.76 65.64
Iris(bpw=2) 0 0 27.16 6.12
Iris(bpw=4) 0 0 0 0
Iris(bpw=6) 0 0 0 0
Iris(bpw=8) 0 0 0 0

Cancer(bpw=1) 0 0 794.52 57.38
Cancer(bpw=2) 0 0 9.92 3.59
Cancer(bpw=4) 0 0 0 0
Cancer(bpw=6) 0 0 0 0
Cancer(bpw=8) 0 0 0 0
Pima(bpw=1) 0 0 1125.96 69.34
Pima(bpw=2) 0 0 21.60 4.11
Pima(bpw=4) 0 0 0 0
Pima(bpw=6) 0 0 0 0
Pima(bpw=8) 0 0 0 0

Table 5.5: Average no. of permutations counted during an evolutionary run
(Ni = 4, No = 3, Nh = 5)(Iris)

results strongly suggest that exact-weight phenotypic permutations will be ex-
tremely rare for realistic network representations and that, given no permutations
in the initial population, a typical Evolutionary Algorithm will not actively create
them.

5.6 Chapter Summary

In this chapter we have presented an empirical investigation which has provided
support for the conclusions drawn in Chapter 4. We began by counting the number
of permutations in the population of a typical GA used to optimise weights for a
Neural Network on a selection of classification problems. The results here again
showed that,

• Exact-weight phenotypic permutations will only occur with the simplest of
representations, and essentially never with the kinds of representation used
in most practical work.

• Genotypic weight permutations are common for extremely simple representa-
tions, but do not appear to affect performance significantly as hypothesised.
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Problem

Avg. Best

Train Error Std.

Avg. Best

Test Error Std. Test

Iris(bpw=1) 0.06 0.03 0.02 0.06
Iris(bpw=2) 0.04 0.01 0.05 0.04
Iris(bpw=4) 0.02 0.01 0.09 0.06
Iris(bpw=6) 0.03 0.01 0.04 0.05
Iris(bpw=8) 0.02 0.01 0.05 0.03

Cancer(bpw=1) 0.00 0.00 0.11 0.02
Cancer(bpw=2) 0.01 0.00 0.08 0.02
Cancer(bpw=4) 0.01 0.00 0.09 0.02
Cancer(bpw=6) 0.01 0.00 0.10 0.02
Cancer(bpw=8) 0.01 0.00 0.08 0.02
Pima(bpw=1) 0.21 0.01 0.38 0.02
Pima(bpw=2) 0.20 0.00 0.38 0.04
Pima(bpw=4) 0.19 0.00 0.37 0.05
Pima(bpw=6) 0.18 0.00 0.37 0.03
Pima(bpw=8) 0.21 0.00 0.31 0.02

Table 5.6: Average error of the EA used to estimate the no. of permutations
during an evolutionary run

The remainder of the investigation dealt with two questions related to the
nature and efficacy of crossover in Neuroevolutionary algorithms. In each case
the answering of these questions is closely related to the issue of the Permutation
Problem as it is only when permutations are recombined that they are though
to be a serious problem8. To this end we first investigated how Price’s Equation
could be used to profile an Evolutionary Algorithm, with a focus on characterising
the contribution of crossover to the overall algorithm performance. We then asked
whether Neuroevolutionary crossover could be better thought of as a macromuta-
tion rather than a recombination operator, concluding that this appears to be a
more plausible interpretation, though the appropriate magnitude of mutation is
yet to be fully ascertained.

Finally we repeated the permutation-counting experiment for three classifica-
tion problems this time with a variable-granularity binary representation. In all
cases very few or no permutations were counted, providing strong evidence for the

8However, as we will see in Chapter 6, the redundancy introduced by the position invariance
of the representation poses a potential problem with or without recombination, i.e. that of
efficiency.
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case that exact-weight phenotypic permutations are not a serious practical concern
when evolving Neural Networks. The experiments were however conducted using
one specific crossover operator; similar experiments using alternative crossover
operators should be conducted in order to determine how general the results of
this chapter are.

We have so far investigated the problem of recombining networks which are
exact permutations of each other. While the event that two such networks are
recombined appears low in practise, there still exists the problem of the redundancy
caused by the symmetry in the search space. This aspect of the problem is explored
in the next chapter.



Chapter 6

Multiset Search Framework

6.1 Introduction

In Section 4.4 it was noted that the symmetry in a particular class of Neural
Network representations causes the search space to be massively redundant, to
be composed of virtually the same search neighbourhood multiplied on a massive
scale. We can take any network, permute its hidden neurons and ‘jump’ to another
point in the search space with equal fitness. We have then moved a potentially
large distance in the genotype space but have not moved at all in the phenotype
space. Furthermore, we are effectively in the same search space as before. Any
operation we might perform on a particular individual (for example a mutation of
its weights) has an exactly equivalent operation in all of its ‘clone’ search spaces
found by permuting the neurons of the network. This results in an extreme form of
redundancy whereby each point in the phenotypic space is a member of anything
from 1 to Nh! neighbourhoods in the genotypic space. In the previous chapter we
demonstrated that the Permutation Problem, specifically the recombination of
two networks which are permutations of each other, does not occur often and is
therefore not a serious concern. The symmetry in the search space does however
result in a representational redundancy, the removal of which may improve the
search process.

The search space consists of a fixed number of neutral networks1. Given any
point in the search space we can traverse the network of points of equal fitness
formed by its permutations and always obtain the same phenotype. While neutral
networks and nearly neutral networks can be beneficial when searching complex
spaces [NE98], in this case the neutral network appears to offer no benefits owing
to the symmetrical nature of the neighbourhood at each point on the network.

What we would like to do is to evaluate as many unique Neural Networks as

1At this point we must be careful not to confuse the concept of networks of (near) equal
fitness points in the search space and the Neural Networks that we are optimising. In this
chapter we will always capitalise and write out in full ‘Neural Network’ so as to avoid the
unfortunate fact that not only do ‘neural’ and ‘neutral’ look similar, the two types of network
have the same acronym (NN).

116
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Nh=1 Nh=2 Nh=3 Nh=4 Nh=5 Nh=6 Nh=7

UCI Iris 0% 50% 83.33% 95.83% 99.17% 99.86% 99.98%
UCI Cancer 0% 50% 83.33% 95.83% 99.17% 99.86% 99.98%

Table 6.1: Redundancy in the search space for different problem configurations
and sizes of network. We note that the proportion of redundancy in the search
space is dependent on the number of hidden neurons rather than the problem
space (number of inputs and outputs).

possible. Given that each neutral network represents one Neural Network we wish
to move freely from one neutral network to another, only evaluating one member
of each. As we have seen in Section 4.5, each network has a variable number of
permutations depending on how many unique neurons2 it contains. As such, the
neutral networks are also of different sizes. The network size can be calculated
however, just as the number of permutations can be, allowing the search space
to be ‘mapped’ without running a search algorithm. It is this ability to map the
search space that will allow us to remove the redundancy.

Table 6.1 shows how the redundancy of the space increases as we add hidden
neurons to a network. We might assume that, due to this redundancy, the search
process is grossly inefficient and that it could be improved by searching the
canonical search space of unique networks. The question is then how to modify
the representation or search process such that time is not wasted evaluating the
same solutions multiple times. Ideally, rather than modifying the search operators
to simply correct for the redundancy, the representation would simply not contain
the redundancy. Were this to be achieved, existing search algorithms could be
applied to this search space without major modification.

One method which has been tested previously is that of working with canonical
representations of networks [Han93, Thi96]. A potential pitfall of this approach is
that the process of converting a network to its canonical form may add noise or
deception to the problem.

In this chapter we propose a novel way to search the space of unique networks
directly. The method was inspired by the underlying structure of the equation for
the probability of the Permutation Problem occurring in the initial population
(Chapter 4) which is also based on multisets. Working with a discrete space for
simplicity, we begin by labelling every possible neuron with a number. Now, rather
than select weights to form a network, we select whole neurons. The problem is
now to find the right combination of neurons to solve the problem. This recasting
of the problem as one of combinatorial optimisation is similar in nature to that
of García-Pedrajas et al. [GPOBHM05] though the approaches differ in how this
recasting is achieved. We begin by presenting a genotypic representation for the

2By unique here we mean unique in terms of its weights, not necessarily its functionality or
role in the network.
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space of multisets. Each individual in this representation is a unique multiselection
(selection with repetition) of neurons. As we are dealing with multisets and the
aim is to eliminate permutations and therefore redundancy, the representation
is order independent and so permutation free. We then define and implement a
set of mappings from multisets to actual network definitions (weights), and back
again. Using this framework we construct a Neuroevolutionary algorithm that
searches the space of unique networks.

6.2 Related Work
An early work which aimed to remove the redundancy present in the Neural
Network search space was that of Thierens [Thi96]. Thierens divided past work
on the problem into principally three camps, namely those that:

• are heuristic in nature [Rad93, TSVM93],

• reduce or eliminate the role of crossover [WSB90], or

• espouse the Evolutionary Programming Paradigm [FFP90, ASP94].

Thierens proposed two simple transformations that, when applied to any
permutation of a Neural Network, would map it to a single member of that group
of permutations. The first transformation was a rule for when to flip the sign
of weights so that all symmetric solutions found by flipping the signs of weights
were reduced to one representation. The second rule sorted the neurons by their
bias weight, enforcing a canonical order on the neurons. Used together, these
transformations could be used to take any network and reduce all of its symmetries
to one single point in the genotype space.

Ultimately this approach involves an online transform on the individuals and
not the representation / search space itself. Standard evolutionary operators can
therefore reach individuals which are not of canonical form; these individuals
would be rejected and ‘snapped back’ into the enforced ordering. As this kind
of transform can cause individuals to make large jumps in the genotype space it
could potentially be a source of noise or deception in the search process.

More recent work on solving, or at least reducing the (supposed) negative effects
of the Permutation Problem is that of García-Pedrajas et al. where the problem of
Neural Network optimisation is recast as a problem of combinatorial optimisation
[GPOBHM05]. The motivation behind this work is that while the problem can
be avoided by relying on mutation alone, a new kind of crossover is necessary
as, “crossover is the most innovative operator within the field of evolutionary
computation” [GPOBHM05]. The authors suggest that while approaches based
on Evolutionary Programming have demonstrated success in the past, the search
process could be improved by additionally making use of the crossover operator. In
order to do so they propose a modification to the crossover process to reduce (but
not completely remove) the potential negative effect of the Permutation Problem.
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The first modification is to recombine whole neurons and never ‘mix’ their
internal representations. The positive effects of only performing crossover at
neuron boundaries, or rather the low correlation between recombined neuron
definitions has been demonstrated previously [GPOBHM05]. Now, considering
neurons as indivisible elements of the network we can consider networks as
selections of neurons. An example demonstrating the Permutation Problem is
given using two networks which contain the same neurons in a different order,
{a, b, c, d} and {c, d, a, b}. The crossover of these two networks could then produce
offspring such as {a, b, a, b} and {c, d, c, d}. The authors repeat the contention
of [ASP94] that the loss of some particular neurons in each network results in a
loss of computational ability and is therefore highly likely to result in a reduction
in fitness [GPOBHM05]. This example is somewhat contrived however as no
hypothesis is given for how we have come to recombine two networks which
contain the same neurons in a different order.

Their solution to this particular problem is to form offspring from the union
of the neurons of each parent. Offspring networks are constructed by selecting
neurons from this set, with the aim of selecting the most useful neurons. This is
presented in contrast to the way that standard crossover can ‘lose’ useful neurons
by repeating some and omitting others; here there is always the opportunity for
each neuron to progress to the next generation.

Networks constructed in this way are then trained on the problem using
backpropagation to optimise the weights. Here the the purpose of the Evolutionary
Algorithm is primarily to select promising combinations of neurons that are then
optimised by the backpropagation routine. This is necessary as while the neurons
may have previously been elements in successful networks, if taken out of that
context and placed in another network the output weights will require retraining
in order to balance the contribution of each in light of the effect of the others.

This approach of finding the best combination of neurons shows competitive
results on various problems from the UCI Machine Learning database. While
this is evidence in support of the efficacy of the presented algorithm it does
not say much about the occurrence or lack thereof of the Permutation Problem.
It is argued from an intuitive standpoint that the proposed approach, “greatly
alleviate[s] most of [the Permutation Problem’s] harmful effects”, however this is
not checked for explicitly.

A useful principle that we can take away from this work however is that avoiding
enforcing an order on the hidden neurons of a network can help to circumvent the
redundancy that is introduced by such order. However, this approach requires
significant changes to a typical Evolutionary Algorithm in order to work with
networks which are represented as sets of neurons. Additionally, while it may
not necessarily be a disadvantage, the approach as it stands is limited to sets of
neurons, disallowing the repetition of neurons. The consequences of this limitation
are not obvious; whether this is a disadvantage or an advantage would need to be
determined through further investigation.

A more formal treatment of the problem is given by Radcliffe [Rad93] where
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both set and multiset approaches are defined on a theoretical level but a method
of implementation is not provided. In this work Radcliffe provides an insight
which does not appear to have become part of the mainstream body of knowledge
in the field of Neuroevolution. Particularly, that the number of optima in the
search space may not increase by the same factor as the rest of the search space.
For example, if the optimum in the unique network space is composed by n copies
of the same neuron then there will only be one optimum in the redundant space.
If the optimum instead has n distinct neurons, then there will be n! optima in
the redundant space. The issue of how similar the redundant and non-redundant
spaces are is explored in Section 6.4.4.

6.3 A Look at the Search Space
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Figure 6.1: The complete search space formed by arranging 4 neurons into networks
of 2 neurons (Nh = 2). Multisets are highlighted in bold; multisets with no possible
permutations are also indicated.

In this section we examine a simple search space in order to highlight the
redundancy that we wish to remove, and in doing so identify the unique points
that we are interested in. Looking at Figure 6.1 we have a collection of four
neurons which have been arranged into all possible networks3 with Nh = 2.

In this example each neuron is a single weight, encoded by two bits. We
therefore have four possible neurons which have been numbered from 0 to 3. The

3While the number of neurons and weights is of course unrealistically small, a typical search
space will often be of the same form as that presented here, simply with a greater number of
weights and bits per weight.
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next two columns show the 42 = 16 ways of arranging the four neurons in terms
of their identifying number and weights respectively. Each line in bold represents
a unique multiselection of neurons, each of which has now been given a network
number from 0 to 9 (as there are ((4

2)) = 10 unique multiselections). The final
column counts the number of occurrences of each neuron in each network; it is
this representation that highlights the redundancy. The neuron count is indexed
from 0 from the right, so the interpretation of 0002 is, “two of neuron 0, zero of
neuron 1, zero of neuron 2 and zero of neuron 3”. Neuron counts which contain a
‘2’ only have one representative in the search space4. Those with two ‘1’ counts
have one other equivalent network in the search space. We can see this if we pick
any of the numbered lines in bold which does not contain a ‘2’ we can find another
network with the same neuron count; this is the redundancy of the space.

Looking at the pattern of bold vs. plain lines in Figure 6.1 we can begin to
discern a pattern which may help us identify these multisets once and only once:
if we group the bold lines together we first have one line, then two, then three,
then four. Similarly, the ‘gaps’ between them, formed by non-bold lines contain
three lines, then two lines, then one. Understanding the nature of this pattern,
and crucially discovering the pattern for numbers of hidden neurons greater than
two will be crucial when devising a method for designing a search space around
these unique multisets.

Given that there are two copies of every multiset with distinct neurons, how
have we chosen which multiset to number as a unique network? Looking at
the networks in terms of their numbered neurons, we note that the bold lines
contain networks which, when read left-to-right, are composed of neuron identifiers
in strictly non-increasing order. This is illustrated in Figure 6.2. Under this
constraint, when selecting between multiple equivalent multisets we choose the only
one that satisfies this constraint. For example when choosing the representative
network for multiset ‘0011’ we reject the network defined by neurons ‘0 1’ (as
the digits are increasing) and instead select the network ‘1 0’ (as the digits are
non-increasing). This ordering will be crucial when forming a 1 : 1 mapping in
both directions between the search space and representation space as it ensures
that we always select the same network for a given multiselection of neurons.

6.4 Multiset Representation

In this section we define the Neural Network representation, and so the search
space of interest. We begin by reviewing the redundancy of the space. We then
define the neuron representation and extend this to a representation for multisets
of neurons (networks). We conclude this section by presenting an intuitive method
for freely navigating the space of multisets.

The problem with a ‘traditional’ mapping of the network weights to the
4This is the case because we select two hidden neurons and if they are both the same, there

are naturally no permutations.
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Figure 6.2: All unique multisets formed by arranging 4 neurons into multiselections
of 2 neurons (Nh = 2). We note that the neuron identifiers are always in non-
increasing order when read left-to-right.

genotype is that it there is a many-to-one mapping from genotype to phenotype.
If at every generation we map each network to its canonical representation we
avoid recombining networks which are permutations of each other but do so at
the cost of introducing ‘jumps’ in the search, where networks are shifted in the
genotype space suddenly.

Instead of searching the original search space we propose searching a space
which simply does not contain this redundancy: the space of neuron multisets.
We have seen that the function of a fully-connected feedforward network depends
only on which neurons are present in the hidden layer, but not on their order.
Finding a canonical representation by enforcing certain ordering constraints so
that we may map equivalent networks to the same genotypic string addresses but
does not remove the redundancy from the search space.

Our aim is to define a search space which contains each multiselection (selection
with replacement) of the possible neurons which can be defined by the search
space, but does not contain permutations of these multiselections. Taking the UCI
Iris problem as an example, we have 4 inputs and 3 outputs, one for each class.
Each hidden neuron will therefore have 7 weights5. Without loss of generality we
define the weights to be binary-encoded reals encoded using 8 bits. We therefore
have φ = (28)

7
= 7.2 × 1016 unique strings of weights from which we can form

neurons6. We can model this generally as,

5Without loss of generality we we do not include a bias input at this stage. A bias input can
be included as an extra input of constant value without modification to the framework.

6Depending on the neuron transfer function, and to some extent on the fitness function not
all of these neurons may be considered unique; some may have functionality that is so similar as
to be effectively indistinguishable. At this stage we assume that each encodes a distinct mapping
though this may not hold in practice.
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φ = (2bpw)
(Ni+No)

, (6.1)

where bpw is the number of bits per weight, Ni the number of network inputs and
No the number of network outputs. With the number of possible neurons known
we can calculate the total number of possible networks that can be formed and
compare it to the total number of unique networks (that is, unique multisets of
neurons). The total number of networks is then,

Ω = (φ)Nh . (6.2)

Without loss of generally we set Nh = 5. For our UCI Iris example this then
gives us

Ω =
(
7.2× 1016

)5
= 1.9× 1084 networks.

Considering only the number of unique ways of selecting neurons irrespective of
their order, we then have

Ψ =

((
φ

Nh

))
= 1.6× 1082 unique networks,

where ((
φ

Nh

))
=

(
φ+Nh − 1

Nh

)
.

The space of unique networks forms

100 · Ψ

Ω
= 0.83%

of the full search space. As Table 6.1 demonstrates, this redundancy increases
rapidly as the number of hidden neurons increases.

6.4.1 Neuron Representation

We begin by first identifying each neuron in our solution space. Each neuron
should have a unique identifier, which for simplicity we choose to be a non-negative
integer n ∈ N0. To illustrate the strategy behind the mapping we take a simple
example with a network with 2 inputs and 1 output. Each hidden neuron is
therefore defined by 3 weights. Without loss of generality we limit the weights to
be one of two values. We denote these values by ‘0’ and ‘1’ but these are simply
labels; the actual weight values may be different7. We therefore have (21)

2+1
= 8

possible neurons, as shown in Table 6.2.
The interpretation in constructing a neuron with definition 〈100〉 is “one copy

of weight 1 and two copies of weight 0, in this order”. If we wish to find out the

7For example, if we set our weight range to be {−1, 1} then ‘0’ would map to −1 and ‘1’
would map to 1
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Neuron Number Representation (base-2)

0 〈000〉
1 〈001〉
2 〈010〉
3 〈011〉
4 〈100〉
5 〈101〉
6 〈110〉
7 〈111〉

Table 6.2: The eight possible neuron definitions for three-weight neurons in a
binary weight space.

actual weights for a particular neuron, e.g. the third neuron in the sequence, we
can simply evaluate the sequence three times to reach it. For a realistic neuron
space however this would be prohibitively inefficient; a way to jump directly to a
given neuron directly is required. As networks will be formed by selecting neurons
rather than weights, we need a way to map directly from the integer identifier of
the neurons to their respective weight strings. Given an identifier, e.g. ‘5’ (the
sixth neuron), we can calculate the weight string directly using modulo arithmetic.
The sequence of ones and zeros in this case can be calculated as follows:〈⌊

5

4
mod 2

⌋
,

⌊
5

2
mod 2

⌋
,

⌊
5

1
mod 2

⌋〉
= 〈1, 0, 1〉.

This is calculated in the general case (in reverse order, from right to left) as

l−1∑
p=0

x

b(l−p−1)
mod b (6.3)

where

• x is the n+ 1th neuron in the sequence (from right to left),

• b is the ‘base’ (the number of possible weights),

• p represents the position in the sequence,

• and l the total number of hidden neurons.

We are simply mapping the integer to its (in this case) binary representation.
We can map the decimal numbers to any base required; the base is determined
by the number of possible weights. We therefore interpret the sequence 〈1, 0, 1〉
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as a template telling us which weights to select to satisfy it. If our weights were
{−1, 1} then this neuron would be defined by the weights 〈1,−1, 1〉.

6.4.2 Network Representation

Now that we have a means of identifying neurons by a unique identifier, we can
look at compositions of neurons into networks. We cannot use the same scheme,
as this would include all networks and therefore all permutations. While we
are interested in all neurons, we wish to encode only for unique multisets of the
neurons to eliminate the redundancy.

We begin by defining the method of encoding the multisets. The expanded
form of the encoding counts the number of instances of each neuron in the network.
As there will typically be many thousands of neurons and we will only be selecting
a small fraction, this representation will be very sparse, i.e. mostly zero. We
illustrate this approach with an example where there are four neurons in the
representation space and the network is composed of Nh = 2 neurons. The list of
all ((4

2)) = 10 possible multisets is as follows:

〈〈0002〉, 〈0011〉, 〈0020〉, 〈0101〉, 〈0110〉, 〈0200〉, 〈1001〉, 〈1010〉, 〈1100〉, 〈2000〉〉

The individual digits will always sum to Nh as that will mean that the right
number of neurons has been selected. This form of the representation tells us
which neurons to use in constructing a network (order is unimportant). When
constructing the network we read the digits from left to right and read off how
many of each neuron is required to build the network. If we take the neurons
to be indexed from l − 1 to 0 from left to right then we could say the the first
network is composed of 2 copies of neuron 0; the next network is composed of one
copy of neuron 1 and one copy of neuron 0, and so on.

This representation will be extremely sparse in general as the number of neurons
will typically be many orders of magnitude larger than Nh. We can produce a
compact form of this representation that can be used to uniquely identify each
multiset by interpreting the network specification as a ternary (base-3) number;
the resulting base-10 integer is our network identifier which not only identifies
the multiset but contains its definition in a manner related to that of combinadic
numbers. This interpretation gives us the mapping shown in Table 6.3. The base
is decided by the number of hidden neurons so the base will always be Nh + 1 as
Nh is the maximum number that can appear in any of the positions.

Suppose now that we wish to search this space of multisets and we further wish
to use an existing algorithm such as Evolutionary Programming or an Evolutionary
Strategy. If we use the expanded (base-3) representation then discretised Gaussian
mutation (for example) is likely to produce infeasible solutions often as the total
of all digits must sum to Nh

8. The same problem will also occur frequently
8If we increase the count of one neuron then we must decrease the count of another neuron

and the nearest non-zero neuron count may be thousands of positions away on the string.
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Network Number Representation
(base-3)

Representation
(base-10)

Step Size

0 〈0002〉 2 -
1 〈0011〉 4 2
2 〈0020〉 6 2
3 〈0101〉 10 4
4 〈0110〉 12 2
5 〈0200〉 18 6
6 〈1001〉 28 10
7 〈1010〉 30 2
8 〈1100〉 36 6
9 〈2000〉 54 8

Table 6.3: The mapping from network number to its sparse and compact repres-
entations. The step size between the base-10 representation is shown to illustrate
that there is seemingly no obvious pattern to its progression.

with crossover. To mitigate this we may instead search the compressed (base-10)
representation. A population of networks would simply be a tuple of multiset
identifiers. At this stage we do not consider how to perform crossover (this is
explored in detail in Section 6.6).

A problem with the base-10 representation is that the step size between
multisets is not constant. How do we traverse from the first to the second multiset,
and then to the third, up the last? We can convert the base-10 representation into
the base-3 representation that tells us which neurons to select, but in order to do
so we need to determine how to generate the sequence so that we may enumerate
each multiset only once and in order. A further difficulty is that we must be able
to jump to any point in the sequence; for realistic problem spaces enumerating all
networks in order to find a particular network in the sequence will be prohibitively
expensive.

For our example with four neurons and Nh = 2 it turns out that inverting
the sequence of triangular numbers9 allows us to to map from a natural number

9Weisstein, Eric W. "Triangular Number." From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/TriangularNumber.html
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Network # Powers Multiset #

0 〈0 0〉 30 + 30 = 2

1 〈1 0〉 31 + 30 = 4

2 〈1 1〉 31 + 31 = 6

3 〈2 0〉 32 + 30 = 10

4 〈2 1〉 32 + 31 = 12

5 〈2 2〉 32 + 32 = 18

6 〈3 0〉 33 + 30 = 28

7 〈3 1〉 33 + 31 = 30

8 〈3 2〉 33 + 32 = 36

9 〈3 3〉 33 + 33 = 54

Table 6.4: List of the 10 networks with their corresponding powers which make
up each multiset number.

n ∈ N0 to its unique multiset number m:

ntrinv(n) =

⌊√
1 + 8n− 1

2

⌋
(6.4)

trinv(n) = n−
(⌊

1
2

+
√

2 + 2n
⌋

2

)
(6.5)

m(n) = 3ntrinv(n) + 3trinv(n) (6.6)

At this level of dimensionality the sequence is basically defined by a self-counting
sequence (n appears n times10). The dimensionality is determined by the number
of hidden neurons in the network. In this case we have Nh + 1 = 3 so we are
dealing with triangular geometry. If we add another neuron then we must extend
the above calculation to tetrahedral geometry. Every identifier is always composed
of l powers of (l + 1). In this case, l = 2 so we have two powers of three.

It is however unclear how this calculation can be extended to higher dimensions.
A conceptually simpler and general method for calculation of this sequence is to

10Weisstein, Eric W. "Self-Counting Sequence." From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/Self-CountingSequence.html
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use nested iteration:

A2(n) =
n−1∑
i0=0

i0∑
i1=0

3i0 + 3i1 (6.7)

A3(n) =
n∑

i0=0

i0∑
i1=0

i1∑
i2=0

4i0 + 4i1 + 4i2 (6.8)

Al(n) =
n∑

i0=0

i0∑
i1=0

· · ·
il−4∑
il−3=0

l−2∑
j=0

(l − 1)ij (6.9)

For example the sequence M2 for our current example (listed in Table 6.4) can
be calculated (with number of neurons available for selection n = 4) as

M2(n) =
n−1∑
i0=0

i0∑
i1=0

3i0 + 3i1

= (30 + 30) + (31 + 30) + (31 + 31) + (32 + 30) + (32 + 31) +

(32 + 32) + (33 + 30) + (33 + 31) + (33 + 32) + (33 + 33)

= 2 + 4 + 6 + 10 + 12 + 18 + 28 + 30 + 36 + 54.

When extended to the case where we have Nh = 3 we now calculate the
sequence M3 (still with n = 4) as

M3(n) =
n−1∑
i0=0

i0∑
i1=0

i1∑
i2=0

4i0 + 4i1 + 4i2

= (40 + 40 + 40) + (41 + 40 + 40) + (41 + 41 + 40) +

(41 + 41 + 41) + (42 + 40 + 40) + (42 + 41 + 40) +

(42 + 41 + 41) + (42 + 42 + 40) + (42 + 42 + 41) +

(42 + 42 + 42) + (43 + 40 + 40) + (43 + 41 + 40) +

(43 + 41 + 41) + (43 + 42 + 40) + (43 + 42 + 41) +

(43 + 42 + 42) + (43 + 43 + 40) + (43 + 43 + 41) +

(43 + 43 + 42) + (43 + 43 + 43)

= 3 + 6 + 9 + 12 + 18 + 21 + 24 + 33 + 36 + 48 + 66 +

69 + 72 + 81 + 84 + 96 + 129 + 132 + 144 + 192.

For any realistically-sized search space however, enumerating the full sequence of
network identifiers is intractable. Similarly, evaluating the sequence in order until
we read the right identifier will be too slow in practise. In order for this to be
practically viable there must be a method in place to look up network identifiers in
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15th network, network 14 : 〈3 2 1〉

Nh = 3 Find highest sn > n
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Figure 6.3: Finding the neuron identifiers for the 15th network in a network space
where Nh = 3.

a more direct manner. In the following section we present computational methods
which efficiently map from multiset identifiers to neuron definitions and back.

6.4.3 Jumping to the nth Multiset

In a realistic search space we will often have many millions of possible multisets.
A method such as that presented so far will be computationally intractable for
such a space; for the method to be practical we need to be able to jump directly
to any multiset in the space without enumerating all multisets before it in the
sequence.

The question is then, which neurons make up the nth multiset? We can use the
relationship between multisets and certain geometric sequences (e.g. triangular,
tetrahedral) to jump more or less directly to the multiset definition that we require.
We explain the method intuitively in this section and then algorithmically in
Section 6.5.

Table 6.5 lists the mapping from consecutive network numbers to the powers
of 4 that make up its network definitions. We note that the powers are simply
the numbers we assigned as the neuron identifiers. As previously highlighted we
cannot expect to be able to enumerate all networks in this way. While we do
not yet have a method for calculating the neuron identifiers for a given multiset
directly, we now present a method which requires significantly fewer operations,
thus allowing for a computationally feasible implementation.

We begin the demonstration of the method by finding the neuron identifiers for
network #15. This corresponds to #14 in Table 6.5, which has neuron identifiers
〈3 2 1〉. Figure 6.3 demonstrates the method, which we now explain informally.
We begin by taking the network identifier (14) and finding the interval or gap in
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Network # Powers Multiset #

0 〈0 0 0〉 40 + 40 + 40 = 3

1 〈1 0 0〉 41 + 40 + 40 = 6

2 〈1 1 0〉 41 + 41 + 40 = 9

3 〈1 1 1〉 41 + 41 + 41 = 12

4 〈2 0 0〉 42 + 40 + 40 = 18

5 〈2 1 0〉 42 + 41 + 40 = 21

6 〈2 1 1〉 42 + 41 + 41 = 24

7 〈2 2 0〉 42 + 42 + 40 = 33

8 〈2 2 1〉 42 + 42 + 41 = 36

9 〈2 2 2〉 42 + 42 + 42 = 48

10 〈3 0 0〉 43 + 40 + 40 = 66

11 〈3 1 0〉 43 + 41 + 40 = 69

12 〈3 1 1〉 43 + 41 + 41 = 72

13 〈3 2 0〉 43 + 42 + 40 = 81

14 〈3 2 1〉 43 + 42 + 41 = 84

15 〈3 2 2〉 43 + 42 + 42 = 96

16 〈3 3 0〉 43 + 43 + 40 = 129

17 〈3 3 1〉 43 + 43 + 41 = 132

18 〈3 3 2〉 43 + 43 + 42 = 144

19 〈3 3 3〉 43 + 43 + 43 = 192

Table 6.5: The 20 networks with three hidden neurons, each power represents the
identifier for a particular neuron.

the first sequence that 14 fits into. We are looking for the number which is just
less than 14. In this case it is 10; we note that we are in gap 3, subtract the 10
from 14 to get 4, and repeat with the next sequence. As we move through the
sequences we obtain another power/identifier by counting the number of the gap
that our network identifier fits into.

We then repeat this process to find the neuron identifiers (powers) for the 19th

network (Figure 6.4).

Why does this work?

We have demonstrated how this method allows us to jump more or less directly
to the powers which make up the multiset number of a given network, but have
not explained why we use the sequences of Figures 6.3 and 6.4 to achieve this
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19th network, network 18 : 〈3 3 2〉

Nh = 3 Find highest sn > n
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Figure 6.4: Finding the neuron identifiers for the 19th network in a network space
where Nh = 3.

or why this method works. In mapping the search space in this manner, so
that consecutive network numbers map to a sequence of multisets, we are taking
advantage of a relationship between multisets and certain geometric sequences,
starting with the triangular numbers. The triangular numbers are calculated as

∑
n

(
n+ 1

2

)
= 1 + 3 + 6 + 10 + 15 + 21 + 28 + 36 + 45 + 55 + . . .

The nth triangular number is equivalent to the number of ways to choose
with repetition 2 items from a collection of n items. If we go up one level of
dimensionality we have the sequence of tetrahedral numbers, the nth member of
which is the same as the number of ways to choosing with repetition 3 items
from a collection of n items. In higher dimensions, we refer to these sequences as
sequences of simplex numbers. Generally, the nth simplex number for dimension
d, sn(n, k) is defined as being

sn(n, d) =

(
n+ d− 1

d

)
. (6.10)

We can can replace the dimension with the number of neurons in our network
Nh, which gives us the starting sequence within which to find our first neuron
identifier (power), giving us

sn(n) =

(
n+Nh − 1

Nh

)
. (6.11)

This relationship is possible because these numbers are present in Pascal’s
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(
n+ 2

3

)
= 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, . . .

Figure 6.5: The tetrahedral numbers are the number of points required to make
triangular-based pyramids (tetrahedrons) of strictly increasing size. The sequence
can be calculated by adding up the preceding triangular numbers. Figure taken
from http://mathworld.wolfram.com/TetrahedralNumber.html

Triangle and are therefore expressible as binomial coefficients. This process of
dropping down through the sequences of simplex numbers is akin to, in the case
where Nh = 3, the process of finding to which level of a tetrahedron our multiset
belongs to (Figure 6.5) and then which row of an equilateral triangle it belongs to
(Figure 6.6). The cumulative nature of simplex numbers is illustrated in Figure
6.7 which gives us another clue as to how this process works.

6.4.4 Desirable Properties of the Search Space

In this section we briefly review some desirable properties of a search space for
Neural Networks and highlight how each is achieved by the search space we define
in this chapter.

Ideally our search space should be free from redundancy, i.e. each point in the
space should be a unique (in terms of its weights) network. For fully-connected
feedforward networks this means that our search space should be order-independent
at the neuron level. This is achieved by mapping each point in the space to a
unique multiselection of neurons.

In traversing the search space, moving from a given network x to either
consecutive network (〈x− 1, x+ 1〉) should entail a difference of one neuron only.
Further, the difference between the replaced neuron n and its replacement (n+ 1)
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(
n+ 1

2

)
= 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, . . .

Figure 6.6: The triangular numbers are the number of points required
to make equilateral triangles of increasing size. Figure taken from
http://mathworld.wolfram.com/TriangularNumber.html

1, 4, 10, 20, 35, 56, ... =
∞∑
x=0

(
x+ 3− 1

3

)
tetrahedral numbers

1, 3, 6, 10, 15, 21, ... =
∞∑
x=0

(
x+ 2− 1

2

)
triangular numbers

1, 2, 3, 4, 5, 6, ... =
∞∑
x=0

(
x+ 1− 1

1

)

Figure 6.7: Figure showing the cumulative nature of simplex numbers. The value
at any point is the sum of the values in the dimension (sequence) below.
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Problem Max. Fitness Average Fitness Std. Dev.

Pima 77.3% 50.0% 13.1%
Pima (multiset space) 77.4% 49.0% 13.0%

Iris 94.2% 33.3% 17.1%
Iris (multiset space) 95.0% 29.8% 17.2%

Table 6.6: Average fitness observed in 100,000 uniform network generations for
the redundant vs. multiset space for two classification problems.

should be one weight step only. This is achieved by the numbering scheme of both
the neurons and networks, with the result that network numbers which are close
are similarly close in Euclidean distance in the weight space, and so more likely
to be similar in terms of functionality, when compared to the same measure in
the redundant space. This is because two networks in the redundant space may
be far apart in terms of Euclidean distance but in fact encode the same network
(due to the permutation symmetry). This suggests that the average difference
between network numbers (grouped in a population) may be a simple but useful
measure of the diversity of the networks in a given population.

Finally, there should ideally be a bi-directional 1 : 1 mapping between network
numbers and network definitions, meaning that translating from a consecutive
network number to the network itself is reversible. This allows for the definition
of search operators which work at the network number level, at the neuron
number level and at the network weight level. In other words both genotypic and
phenotypic variational operators may be used to search their respective spaces.

How similar are the spaces?

We briefly compare here the redundant and multiset spaces by sampling uniformly
to inspect their aggregate statistics. We hypothesise that the spaces should have
nearly identical average fitness as they contain the same networks (phenotypes).
The redundant space repeats some networks more than others (depending on how
many distinct alleles/neurons they are composed of) so we would expect this to
cause the spaces to not be completely identical but nearly so.

Table 6.6 lists the average fitness for the redundant and multiset spaces for
two classification problems, sampled by generating 100,000 networks uniformly
for each space and measuring their fitness. The differences in the averages can
perhaps be attributed partly to sampling error and partly to differences in the
space; a more comprehensive study would be required to determine the level of
similarity more conclusively. For the purposes of this investigation it is sufficient
to know that they are approximately similar in terms of the networks present, i.e.
that in reducing the size of the space so dramatically we do not appear to have
‘lost’ any networks.
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Consecutive
Network no.

Multiset 
no. Neuron 

identifiers

Neuron weights

neuron_ids(n, l)
network_number(n_ids)

weights(n_ids, bpw, N_i, N_o, w_low, w_high)

ms_no_to_neuron_ids(ms)

ids_to_ms_no(n_ids)

Figure 6.8: Each element of the Multiset Search framework is shown with the
functions which allow traversal from one element to the other.

6.5 Search Framework

In this section we define the building blocks of the Multiset Search Framework
which will form the foundation for our multiset-based search algorithms.

The Multiset Search Framework defines a search space which consists only
of multisets. For example if we have n items we can form nl strings of length l.
This will include strings which are permutations of each other. The search space
defined by this framework provides a mapping which allows for the consecutive
numbering of the unique multisets within this space. As the mapped search space
consists of consecutive numbers with no gaps, we can use any search algorithm
capable of searching in a space of integers, with only minor modification. The
framework defined in this section aims to give the practitioner the tools to represent
and manipulate points in this search space such that a search algorithm can be
applied to it. Each element of the Multiset Search Framework is shown in Figure
6.8, including the functions to use to convert elements into their alternative
representations. In this section we define each of these functions and demonstrate
their role in the framework.

If we have Ψ possible multisets (that is, ways to choose Nh neurons, with
replacement but without respect to order), then we have a search space of networks
which we number from 0 to Ψ− 1. We can map each of these networks to their
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Algorithm 5 Calculate the position of the simplex number that is just less than
n in the lth dimension
procedure next_smallest(n, l)

i← 0
while true do

if n ≤ simplex_number(i+ l, l + 1) then
return 〈i− 1, simplex_number(i− 1 + l, l + 1))

end if
end while

end procedure

Algorithm 6 Calculate the neuron identifiers for the nth network with l hidden
neurons.
procedure neuron_ids(n, l)

ids← 〈〉
n′ = n+ 1
while l 6= 0 do

id, n′ = next_smallest(n′, l − 1)
ids← ids+ 〈id〉
l← l − 1

end while
return ids

end procedure

respective multiset identifier (ID) which acts not only to identify the network
uniquely (i.e. there is a 1 : 1 mapping between the consecutively numbered
networks and the multiset identifiers) but also to encode its neuronal composition11.

The multiset ID of network number n can be calculated from its neuron
identifiers as:

multiset_id(n, l) =
∑

n_id∈neuron_ids(n,l)

(l + 1)n_id.

This calculation is shown in full in Algorithm 7 and is dependent on Algorithm 5.
We first discover the identifiers for the neurons of that particular network using
Algorithm 6, and then form the multiset identifier by summing the l powers of
(l + 1), raised to each of the neuron identifiers (interpreted as base-10 integers).

The mapping from a multiset identifier to a vector of neuron identifiers is
given in Algorithm 8. The reverse operation, to recover the neuron identifiers
from a multiset identifier is given in Algorithm 9. This process demonstrates
how a multiset number not only identifies but fully defines the multiset that it

11Due to the nature of the mapping the number itself contains the neuron selection information,
making it a very compact representation for a network.
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Algorithm 7 Calculate the network/multiset identifier for a particular network
in the sequence of possible multisets. The value returned is the nth term in the
sequence for multisets containing l neurons (and so networks containing l hidden
neurons).
procedure multiset_id(n, l)

m_id← 0
n′ = n+ 1
while l 6= 0 do

id, n′ = next_smallest(n′, l − 1)
m_id← m_id+ (l + 1)id

l← l − 1
end while
return m_id

end procedure

Algorithm 8 Calculate multiset identifier from neuron identifiers.
procedure ids_to_ms_no(n_ids)

l← len(n_ids)
base← l + 1
return

∑
n∈n_ids base

n

end procedure

represents.

Given our neuron identifiers we then wish to map each to its actual weights.
To do this we need to specify the number of inputs and outputs of each neuron
(which must be the same for each neuron), the number of bits per weight assigned
(bpw) and the weight range [lower, upper] used for the network weights.

This process requires us to convert bases using a particular number of digits.
An algorithm for this purpose is given in Algorithm 11. We also require the
function defined in Algorithm 12 to take the base-10 form of the binary weight
and map it to a point within the given weight range.

Using this collection of functions we therefore have the means to translate our
consecutive network numbers into multisets of neurons, and then into vectors of
weights so that the actual networks can be evaluated. Then, we can reverse the
mapping so that changes made to the neurons can then be mapped to appropriate
network number. The process of mapping from a vector of neuron identifiers
back to a network number is detailed in Algorithm 13. The strict non-increasing
ordering of the neuron identifiers allows us to map from the network number to
the identifiers and back again to the same network number in a deterministic
manner.
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Algorithm 9 Calculate neuron identifiers from multiset identifier.
procedure ms_no_to_neuron_ids(ms_no, l)

base← l + 1
i← 0
while basei <= ms_no do . Iterate just past the id

i← i+ i
end while
i← i− 1 . Step back one to actual id
if i ≥ 0 then

return 〈i〉+ ms_no_to_neuron_ids(ms_no− basei, l)
else

return 〈〉
end if

end procedure

Algorithm 10 Calculate network weights from neuron identifiers.
procedure weights(neuron_ids,Ni, No, bpw, lower, upper)

weights← 〈〉
for id ∈ neuron_ids do

neuron← convert_base(id, 2bpw, Ni +No)
neuron← neuron_id_to_dec(x, lower, upper, 2bpw) for x ∈ neuron
weights← weights+ 〈neuron〉

end for
return weights

end procedure

6.5.1 Efficient ‘next_smallest’ Implementation

As defined before, we calculate the nth l-dimensional simplex number as

simplex_number(n, l) =

(
n+ l − 1

l

)
=

(
n+ l

l + 1

)
.

In the next_smallest procedure (Algorithm 5), starting from 0 each time and
iterating until we find the simplex number that is just smaller than n will take a
prohibitively long time for any realistic network space; this is the na ive method
used in Algorithm 5. If we could estimate a start point for the iteration that is at
least relatively close to the number we are looking for we can save a considerable
number of iterations. In this case we can estimate the simplex number as follows12:

estimate_simplex_position(n, k) =

⌊
(n · k!)

1
k −

(
k − 1

2

)⌋
,

12The simplex position estimate is due to Henry Bottomley, conveyed through personal
communication.
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Algorithm 11 Convert x to xbase using l digits.
procedure convert_base(x, base, l)

digits = 〈〉
p← 0
while p < l do

digits← digits+
〈

x
basep

mod base
〉

end while
return reverse(digits)

end procedure

Algorithm 12 Map integer value ≤ value_max to point in range [lower, upper].
procedure neuron_id_to_dec(value, lower, upper, value_max)

return lower +
(
value · upper−lower

value_max

)
end procedure

Algorithm 13 Calculate the identifier in the space of consecutive network numbers
for the network defined by the given vector of neurons
procedure network_number(neuron_ids)

l← len(neuron_ids) . Infer dimensionality from number of neuron
identifiers

reversed_ids← reverse(neuron_ids)
net_number ← 0
i← 0
while i < l do

net_number ← net_number + simplex_number(neuron_ids[l − 1−
i], i)

i← i+ 1
end while
return net_number

end procedure

where n is the number we wish to find the smaller neighbour of in the simplex and
k + 1 is simplex dimension we are searching. The more efficient implementation
which makes use of this estimate is given in Algorithm 14, allowing for the efficient
calculation of positions in the simplex sequences for realistic network spaces.
Without this optimisation the calculation of the neuron identifiers would not be
feasible.

6.6 Evolutionary Application
In this section we use the Multiset Search Framework to construct a simple
Evolutionary Algorithm to search the space of unique networks.
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Algorithm 14 Calculate the term in the sequence of l-dimensional simplex
numbers which is just less than n. For l = 2 we are looking for the largest
triangular number less than n. For l = 3 we iterate through the tetrahedral
numbers, and so on.
procedure next_smallest(n, l)

estimate = estimate_simplex_position(n, l + 1)
sn_for_estimate = simplex_number(estimate, l)
i← estimate
if sn_for_estimate = n then

return 〈max(0, estimate− 1), n− simplex_number(estimate− 1, l)〉
else if sn_for_estimate > n then . Count down from overestimate

while true do
if simplex_number(i, l) < n then

return 〈max(0, i− 1), n− simplex_number(i− 1, l)〉
i← i− 1

end if
end while

else . Count up from underestimate
while true do

if n ≤ simplex_number(i, l) then
return 〈max(0, i− 1), n− simplex_number(i− 1, l)〉
i← i+ 1

end if
end while

end if
end procedure

The presented algorithm is much like any simple crossover/mutation-based
Evolutionary Algorithm; the principal difference between this and other Neuroe-
volutionary algorithms is the genotype space and the way it is mapped onto the
phenotype space of networks. We are directly searching the space of multisets in a
way that is amenable to search using an Evolutionary Algorithm. An assumption
here is that our mapping from consecutive integers to multisets is a useful one.
For this mapping to be useful, networks 3 and 4 should be more similar to each
other than to, say, networks 89 or 125.

The algorithm is outlined in Algorithm 15. Figure 6.9 demonstrates how neuron
crossover works in the multiset case. We first map from the network numbers
to their respective multiset identifiers, then to vectors of neuron identifiers in
non-increasing order. Given these vectors we are then free to recombine them as we
wish. In this case we opt for 1-point crossover though any other form of crossover
can be used. The only constraint is that after crossover the produced vectors of
neuron identifiers must be re-ordered such that they are again in non-increasing
order. Given this need for re-ordering it may be beneficial to replace this step with
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Algorithm 15 Simple Evolutionary Algorithm to directly search the space of
multisets.
pop← random_network_identifiers(pop_size)
while gen < generation_limit do

Evaluate fitness of each network
Select parents for next generation
Map networks to neuron identifiers
Randomly cross over neuron identifier vectors
Randomly perturb neuron identifiers
Map perturbed neuron identifiers back to networks

end while

42 89

480 1980

[ 3, 3, 2, 1, 1 ] [ 4, 3, 3, 3, 2 ]

[ 3, 3, 2 | 1, 1 ] [ 4, 3, 3 | 3, 2 ]

[ 3, 3, 2, 3, 2 ] [ 4, 3, 3, 1, 1 ]

720

Re-map so as to be in non-increasing order[ 3, 3, 3, 2, 2 ] [ 4, 3, 3, 1, 1 ]

51

1740

83

Network 1 Network 2

Network numbers

Convert to multiset identifiers

Convert to neuron identifiers

Select crossover point

Perform crossover

Convert back to multiset identifiers

Convert back to network numbers

Figure 6.9: An example of how the crossover process is performed for two example
networks in a search space with Nh = 5.

a crossover operator such as that defined in [Rad93] which is designed specifically
with multisets in mind. Given that we are investigating the application of existing
Evolutionary Algorithms with minimal modifications to the space of multisets we
do not investigate the development of such an operator at this stage.
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42

40, 42, 43

[ 3, 3, 2, 0, 0 ]

Network

Network number

Perturb network number using discretised
Gaussian noise to produce λ=3 offspring

Convert to neuron identifiers[ 3, 3, 2, 1, 1 ] [ 3, 3, 2, 2, 0 ]

470 505 Convert to multiset identifiers480

Figure 6.10: An example of how the mutation process is performed at the network
number level for an example network in a search space with Nh = 5.

Mutation is essentially unchanged from a typical discretised mutation operator
as might be used for an integer-based genotypic representation. Figure 6.10
shows the creation of offspring through applying discretised Gaussian noise to a
network number. In this case there will be no need for re-ordering of the neuron
identifiers as we are working strictly at the network number level of abstraction.
We hypothesise it is fully possible to search the space using only mutation operators
and so avoid the need for re-ordering.

It is however possible to perform mutation at the neuron level. This is
illustrated in Figure 6.11. The process is similar to that of crossover in that we
convert from the network number to the neuron identifiers, apply the perturbation
and then re-order the neuron identifiers such that they are again in non-increasing
order.

6.6.1 Multiset-based Populations

Recent work by Manso And Correia demonstrates that evaluations can be saved in
Evolutionary Algorithms by considering the population as a multiset [MC09]. Not
to be confused with neuron multisets, multiset-based populations are populations
where individuals are stored once along with their respective count, i.e. how many
times they appear in the population. If the population is to have 3 copies of an
individual, then we simply record 3 as its count and use this value when calculating
selection probabilities.

Given that the fitness is the same for all copies of a particular individual,
it makes sense to only evaluate the fitness of one of each copy and share the
fitness between the copies. The multiset representation provides a convenient
way of tracking individuals and calculating selection probabilities based on their
multiplicity (number of times they appear in the population) by condensing
network definitions into single numeric identifiers.

An advantage of the network encoding method presented in this chapter is that
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42

51

Network

Network number

Convert to neuron identifier

Convert back to multiset identifiers

Convert back to network numbers

[ 3, 3, 2, 1, 1 ]

Convert to multiset identifier480

[ 3, 3, 2, 1, 0 ] [ 2, 3, 2, 1, 1 ] [ 3, 3, 2, 2, 3 ]
Apply discretised Gaussian 

noise to each neuron identifier, 
producing λ=3 offspring

Re-map so as to be in non-
increasing order[ 3, 3, 2, 1, 0 ] [ 3, 2, 2, 1, 1 ] [ 3, 3, 3, 2, 2 ]

475 720300

3241

Figure 6.11: An example of how the mutation process is performed at the neuron
level for an example network in a search space with Nh = 5.

the population is guaranteed to consist only of unique networks. As each network
has a unique identifier which is not simply attached to it online, on a per-run
basis as in the NEAT algorithm [Sta04] but is inherent to it, we can very easily
identify copies of the same network and ensure that we calculate their fitness only
once. The algorithm using this kind of population has the property that the time
spent evaluating networks per generation decreases as the population converges
(there are fewer unique individuals), causing the algorithm to speed up.

Without loss of generality if we set our population size to 1000 and number of
generations to 100 then we should expect to perform 100, 000 evaluations over the
course of a run. With a multiset-based population the number of evaluations will
invariably be less than this. In the next section we investigate a strategy for using
the ‘left over’ evaluations to broaden the search without requiring any evaluations
above the number expected were we to be using a standard individual-based
population.

6.6.2 Zero-cost Population Inflation

In this section we define the concepts of Zero-cost Population Inflation and Virtual
Populations. The former refers to a process of inflating the population size to
consider more solutions without increasing the number of evaluations required
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when compared to a standard population model. A virtual population is essentially
a population with the dynamics of a large population while containing relatively
few individuals.

If we have multiple copies of individuals in a given population then we will
require fewer evaluations to determine their fitness if we use a multiset-based
population. At each generation we therefore have a percentage of evaluations that
can be considered to be a ‘saving’ that can either be kept or ‘spent’ elsewhere.

We propose taking the saving of evaluations at each generation and spending
it on new individuals which are introduced to the population either through a
process of heavily mutating (macromutating) existing individuals or randomly
generating new individuals. The aim here is to broaden the search and provide
more genetic material for the existing elite members of the population to be
recombined with. The end result of this is that if we set our population size to
be 100 then we are stating that at each generation we will evaluate 100 unique
individuals rather than simply 100 individuals, some of which are likely to be
copies of each other.

We then have the concept of the virtual population which refers to a population
that is larger than its number of unique individuals. Using multiset populations
there is effectively no cost in increasing the count for a given network; we will still
only evaluate it once. This increase should however modify its chance of selection,
for example under fitness-proportional selection. This virtual population that we
select individuals from will tend to be much larger than the initial population size,
though this broader search will cost no more in evaluations than the equivalent
algorithm using a standard individual-based population. It also means that we
don’t ‘spend’ any of the spaces on the population on simply storing copies so that
fitness-proportional selection functions. We can instead use the virtual population
to provide the desired selection dynamics and focus actual evaluation time on new
networks.

For the empirical tests in this chapter we will use multiset populations to
reduce the number of evaluations required for the initial individuals, and use the
remaining evaluations to explore the validity of performing macromutations and
adding new networks to the population. At this stage an implementation based
on virtual populations is left for future work.

6.6.3 Empirical Results

In 15 runs of evolving multiset-based networks for the UCI Pima Diabetes classi-
fication problem the average best (training) accuracy after 250 generations of the
presented Evolutionary Algorithm was 75.9% with a standard deviation of 1.14%.
The best network found in all runs had accuracy 78.14%.

While these results are not particularly competitive with other results on the
same problem the main use of these results is to demonstrate that the presented
algorithm makes good progress on the problem while searching the space of unique
multisets. The results also lend early insight into which operators may work
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Operator Average Successful Applications Std. Dev.

Mutation 7.8% 1.3%
Macromutation 25.1% 2.8%

Crossover 13.0% 1.4%
New Network 0.5% 0.2%

Table 6.7: Percentage of applications of each operator which resulted in an
improvement in fitness.

Network
Number

Set
Number

Representation
(base-3)

Representation
(base-10)

0 〈0002〉 2
1 0 〈0011〉 4

2 〈0020〉 6
3 1 〈0101〉 10

4 2 〈0110〉 12

5 〈0200〉 18
6 3 〈1001〉 28

7 4 〈1010〉 30

8 5 〈1100〉 36

9 〈2000〉 54

Table 6.8: The
(

4
2

)
= 6 sets embedded in the space of

(
4+2−1

2

)
= 10 multisets.

best for this new search space. Table 6.7 lists the average success rates for each
operator where success is deemed to be cases where the operator has improved
the fitness of at least one (in the case of crossover) of the networks it is operating
on. From these results we can see that perhaps surprisingly macromutation is the
most useful operator. Given the high correlation between individuals that are
close in the search space and their weights (a relationship that is not necessarily
the case in the redundant space), it may be that a larger magnitude of mutation
is often needed to escape local minima. As such, what we term as macromutation
here may in fact be mutation, meaning that a macromutation would have a larger
magnitude still.
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0, 0, 0, 1, 4, 10, 20, 35, ... =
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x=0
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)

Figure 6.12: Figure showing the cumulative nature of Pascal simplex numbers.
The value at any point is the sum of the values in the dimension (sequence) below.

6.7 Set-based Representation

The search space can be reduced further by eliminating repetition of neurons. If
we reduce the representation to selections of neurons rather than multisets, then
we make a modest reduction in the search space. As the difference between the
two spaces will depend largely on Nh, this saving will increase as the network size
increases. This kind of representation would also allow problems where repetition
is not allowed to be mapped in this way, broadening the scope of the representation
to the vast majority of combinatorial optimisation problems. For larger search
spaces the motivation would not be the smaller search space but rather the fact
that a set-based representation would automatically satisfy the constraints of
combinatorial optimisation problems where we wish to select any one object only
once, i.e. operators would not be able to reach infeasible points.

A set-based representation can in fact be constructed using the algorithmic
machinery presented in this chapter. To see the strategy behind this approach
we examine Table 6.8 which shows the network space used to exemplify the
multiset-based representation (Table 6.3). We have numbered and highlighted in
bold the

(
4
2

)
= 6 sets embedded in the space of

(
4+2−1

2

)
= 10 multisets. As such

we can see that the sequence of combinadic numbers that describes our sets can
be found by enumerating the sequence for multisets and skipping any where the
base-3 representation is not composed entirely of zeroes and ones.

Thus for the case where Nh = 2 we would be interested in mapping the
sequence A03846413, “Sums of 2 distinct powers of 3.” to consecutive network
identifiers. Put another way, we are looking for members of the same sequence as
with multiset search but we are skipping those which are not made exclusively of
distinct identifiers (the powers used to produce the multiset number).

The same cumulative relationship between dimensions of the sequences of
what we call Pascal simplex numbers is illustrated in Figure 6.12. The method
for finding the neuron identifiers of a given set is identical to that presented for

13http://www.research.att.com/ njas/sequences/A038464
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the multiset case, except now we are using combinadic numbers composed of
strictly distinct powers. We also use slightly different but related sequences for
the identifier calculation and require a new approximation for the position of the
next smallest member of these sequences.

6.8 Chapter Summary
In this chapter we have presented a framework for building Evolutionary Al-
gorithms based on a permutation-free representation. This approach differs from
previous work by re-mapping the representation itself rather than simply removing
redundancy algorithmically at each generation. We began with the motivation
for this work, which is the massive redundancy introduced by the Permutation
Problem symmetry. We then surveyed previous approaches at removing the
redundancy in the literature and contrasted the previous methods to our method.

The relationship between a typical genotypic representation often chosen for
Neuroevolutionary algorithms and the space of unique networks (or, multisets) was
presented, and a proposal for a mapping presented. A computationally-inefficient
but intuitive method for translating between the smaller space of unique networks
and the ‘full’ space was then presented. This method was replaced with a more
efficient method that allows the representation to be used in practical settings.

The relationship between multisets (unique multiselections of neurons in
this case), combinadic numbers and triangular/tetrahedral numbers was then
investigated; a concept which forms the basis for the representation.

A search framework based on this representation was then presented, providing
the building blocks necessary to build search algorithms on top of the new non-
redundant representation. This framework was then used to build a simple
Evolutionary Algorithm which we applied to a difficult classification problem,
providing preliminary results.

Finally we introduced the concepts of multiset and virtual populations, and
detailed how the presented representation can be reduced to the space of sets,
broadening its applicability to the majority of combinatorial optimisation problems.
The work of this chapter is however preliminary in nature; future work will be to
investigate the efficacy of the approach more fully.



Chapter 7

Conclusions and Further Work

The aim of this thesis has been to characterise the severity of the Permutation
Problem when evolving Neural Networks. In attempting to determine this we have
encountered two possible interpretations of the problem. For the exact-weight
permutation case we have shown that the probability of this kind of permutation
appearing for realistic network search spaces is very low. The empirical results
then suggest that given few or no permutations in the initial population, an
Evolutionary Algorithm does not readily produce new permutations. In the case
of permutations due to role equivalence we have estimated how the probability
of the Permutation Problem will increase as the redundancy of the search space
increases. This increase has been hypothesised to only be significant at very high
levels of redundancy, though this issue requires further investigation.

As the Permutation Problem is closely linked with the efficacy of crossover
operators we investigated whether crossover can be a useful operator in Neuroe-
volutionary search. A key difference between this and past work is that we check
for permutations explicitly as well as measuring the effect of crossover. In this
way we avoid explaining the performance of crossover in terms of permutations as
we have started by demonstrating that no permutations are being recombined. As
our results show that crossover has been effective in this particular experimental
setup we recommend further work into determining when and why crossover is
able to contribute to the evolutionary process. It should be noted that the conclu-
sions regarding crossover presented here are based on a particular experimental
setup and so are not general conclusions regarding the efficacy of crossover in
Neuroevolutionary search. For this to be determined the experiments should be
repeated with alternative crossover operators and a wider range of test problems.

Finally we asked how what we have learned about the Permutation Problem can
be used to improve the search process. We exploit the structure and symmetry in
the search space introduced by the Permutation Problem to remove the redundancy
such that we search only the space of unique multiselections of neurons. This
search space is then reduced further to only those networks with distinct neurons.
Each of these spaces is typically a tiny fraction of the full redundant space and
so could lead to more efficient evolutionary search algorithms for combinatorial
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optimisation problems such as neural network construction (neuron selection). We
presented preliminary empirical results using a simple Evolutionary Algorithm.
As this algorithm was largely unmodified we expect that future algorithms which
are designed specifically for this space may offer better performance.

7.1 What have we learned...

7.1.1 About the Permutation Problem?

Thesis Question 1: Is the Permutation Problem Serious in Practise?
In Chapter 3 we began by identifying the multiple levels at which we can interpret
the Permutation Problem. In discussing the severity of the problem it is essential
that we are clear on the definition in use as what is true for one interpretation
may not be true for others.

We have focussed primarily on exact-weight permutations of neurons. In
Chapter 4 we presented the exact probability for drawing permutations in an
initial population. Using a method based on partitions we were able to calculate
this for realistic network spaces, thus demonstrating the extremely low probability
of exact-weight permutations. The same method was then used to estimate
the change in probability as the level of redundancy increased, resulting in the
conclusion that the level of redundancy would need to be very high in order to
increase the probability significantly.

Thesis Question 2: Is our understanding of how recombination works
in the context of Neural Networks sufficient? In Chapter 5 we conducted
experiments which aimed to provide empirical data on the Permutation Problem for
recombination-based Evolutionary Algorithms. We also investigated the efficacy
of crossover from the perspective that its contribution or lack thereof must be
explained by something other than exact-weight permutations as we found that
such permutations were not being recombined.

We began with an analysis based on Price’s Equation which showed that
crossover did indeed appear to be contributing significantly to the evolutionary
process. Then in Section 5.3 we attempted to determine whether the contribution
of crossover can be explained from the perspective of it being a macromutational
operator rather than a recombination operator. Our conclusion here was that
crossover may be a macromutation of lesser magnitude than checked for in this
investigation. Further investigation is required if we wish to determine with greater
certainty when and why crossover can be a useful operator when evolving Neural
Networks. At this stage we can see that both at the neuron and network level
crossover appears to contribute to the search process. As such a recommendation
of this work would be that it may be worthwhile to investigate the recombination
of Neural Networks in more depth.
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7.1.2 About Neuroevolutionary Search?

Thesis Question 3: Can our knowledge regarding the Permutation
Problem be used to improve Neuroevolutionary search? In Chapter
6 we presented our finding that it is possible to build a permutation-free search
space using a mapping based on combinadic numbers. In its presented form the
representation is amenable to search using existing algorithms in the literature;
future work would be to construct an algorithm specifically designed for searching
the space of unique sets or multisets. An efficient implementation was then presen-
ted, making the framework viable in practise. The initial results show performance
that is similar to that of the empirical investigations of Chapter 5. This is perhaps
unsurprising given that the representations contain the same networks and the
algorithms are very similar. In later work we would hope to exploit the removal
of the redundancy further by developing search operators which are tailored to
this space. We have demonstrated however that it is possible to reduce massively
redundant spaces to their unique points in a computationally efficient manner.

7.2 Future Work

The conclusions of this thesis regarding the Permutation Problem and the ef-
fective optimisation of Artificial Neural Networks have been investigated for
fixed-architecture single-layer feed-forward networks. It is expected that the
theory presented will apply equally well to multi-layered networks, though it will
need to be extended in order to precisely determine how multiple layers will affect
the probability of the problem occurring.

Additionally, an investigation into the role redundancy of typical neuron spaces
may shed more light on how to make Neuroevolutionary search more effective.
Particularly, if many possible neurons in the search space perform essentially the
same function (given the chosen fitness function) then the likelihood of encountering
same-role permutations increases. While the Multiset Search Framework provides
a means to search the space of unique networks, if the neurons themselves are
not functionally unique then some choices of neurons will result in effectively the
same network. We consider work towards reducing the neuron search space to
those of significantly unique functionality a worthy research goal for future work.

7.2.1 Extensions to the Multiset Search Framework

Gray Coding

The representation scheme for neurons is designed such that moving from a neuron
to either of its neighbouring neurons will result in moving one weight step away
from the original. With a binary representation we have the problem of ‘Hamming
Cliffs’ where a one-bit change can result in a large jump in the weight space.
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The encoding for the neurons could be converted to Gray Coding to reduce the
distance from one neuron to another to ‘smooth’ out the neuron search landscape.

Bias Weights

The current representation does not explicitly support bias weights but as they
can be considered as extra input weights it is possible to add them in as such
without modifying the representation. The presented algorithm does not provide
this however. The negative effects of not having a bias can be mitigated to a
certain extent by normalising the inputs such that most pass through the origin;
this is the approach we have taken in this work. A future version of the algorithm
will also optimise bias weights for each hidden neuron.

Set-based Representation

Future work is to implement the set-based representation to facilitate application
to problems where repetition of elements is undesirable, for example in ensemble
construction or in the majority of combinatorial optimisation problems. The
only practical consideration in implementing this kind of representation is the
derivation of a new approximation to use in speeding up the discovery of item
(e.g. neuron) identifiers. A slight modification to the simplex number position
approximation1 that may prove to be a good starting point is

estimate_pascal_simplex_position(n, k) =

⌊
(n · k!)

1
k +

(
k − 1

2

)⌋
. (7.1)

Ensemble Construction

In the current model, individuals in the population are single numbers which
identify a network (each individual is therefore a single network). If we extend
the population genotype to be composed of several network numbers rather than
one, then each individual effectively encodes a particular network ensemble.

We now have combinatorial optimisation at two levels: on one level we are
looking for the best combination of neurons to build networks with and on the other
we are looking for the best combination of networks for our ensemble. Related to
the future work on employing set rather than multiset-based representations, we
believe this could be a fruitful avenue for research in the field of ensemble learning.
The new search space would be that of unique selections of distinct classifiers.

As the search space now contains no permutations, distant networks (in terms
of their network) now always differ considerably in terms of their weights. An
interesting question is whether this now provides a very simple estimator of
ensemble (or population) diversity, by looking at the difference between the
network numbers. If this is the case then this could lead to better population

1Due to Henry Bottomley, conveyed in informal communication.
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initialisation routines and a simple similarity metric that might be useful when
choosing parents for recombination.
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Genetic Algorithms Digest
Friday, 9 December 1988 Volume 2 : Issue 24

- Send submissions to GA-List@AIC.NRL.NAVY.MIL
- Send administrative requests to

GA-List-Request@AIC.NRL.NAVY.MIL

Today’s Topics:

- Administrivia & Reminder about Conference Deadline
- Re: GAs for control systems
- Alternative knowledge representations for GA learning (2)
- GAs and neural nets (2)

Date: Wed, 7 Dec 88 11:41:49 GMT
From: Nick Radcliffe

<njr\%itspna.edinburgh.ac.uk@NSS.Cs.Ucl.AC.UK>
Subject: GAs and neural nets

I am about to begin an investigation of Genetic Learning
Algorithms for layered, feed-forward Neural Networks and would
appreciate any information/comments/references anyone has
about similar work. Specifically, the process of training a
Neural Network amounts to the selection of an optimal set
of weights (or connection strengths) between the neurons it
comprises.

A major subtlety that I see in this problem is that in fully
connected nets (and to a lesser degree in partially connected
nets) with n hidden nodes there are n! equivalent optimal
solutions which may be generated by permuting the labels
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of the hidden units. It seems to me very likely that if no
action is taken to try and overcome this the crossover
operation will be very destructive unless cleverly implemented.

This is because even crossing over two equivalent networks which
use different labellings will not, in general, generate another
equivalent network. I have various ideas about how to overcome
this, but it would clearly be silly to reinvent the wheel.

The only papers I am aware of in this area are one by Darrell
Whitley (Applying Genetic Algorithms to Neural Network Problems:
A Preliminary Report), and one that takes a hierarchical
approach by Eric Mjolsness, David Sharp and Bradley Alpert
(Scaling, Machine Learning and Genetic Neural Nets).
Neither of these addresses the permutation problem directly.

All help will be appreciated.

Nick
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Nick Radcliffe
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The King’s Buildings
Edinburgh University
Edinburgh
Scotland
(031) 667 1081 x 2850
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